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Gene expression based inference of cancer
drug sensitivity

Smriti Chawla1, Anja Rockstroh 2, Melanie Lehman2,3, Ellca Ratther2,
Atishay Jain4, Anuneet Anand4, Apoorva Gupta5, Namrata Bhattacharya2,4,
Sarita Poonia1, Priyadarshini Rai1, Nirjhar Das 6, Angshul Majumdar4,7,8,
Jayadeva6, Gaurav Ahuja 1, Brett G. Hollier 2, Colleen C. Nelson 2 &
Debarka Sengupta 1,4,7

Inter and intra-tumoral heterogeneity are major stumbling blocks in the
treatment of cancer and are responsible for imparting differential drug
responses in cancer patients. Recently, the availability of high-throughput
screening datasets has paved theway formachine learning based personalized
therapy recommendations using the molecular profiles of cancer specimens.
In this study, we introduce Precily, a predictive modeling approach to infer
treatment response in cancers using gene expression data. In this context, we
demonstrate the benefits of considering pathway activity estimates in tandem
with drug descriptors as features. We apply Precily on single-cell and bulk RNA
sequencing data associated with hundreds of cancer cell lines. We then assess
the predictability of treatment outcomes using our in-house prostate cancer
cell line and xenografts datasets exposed to differential treatment conditions.
Further, we demonstrate the applicability of our approach on patient drug
response data from The Cancer Genome Atlas and an independent clinical
study describing the treatment journey of three melanoma patients. Our
findings highlight the importance of chemo-transcriptomics approaches in
cancer treatment selection.

Cancer is a highly complex disease exhibiting varying degrees of
genetic and phenotypic heterogeneity within individuals. Despite the
apparent overall improvement in prognosis, responses to cancer
treatment are often unpredictable. This is primarily attributable to the
clonal diversity of cancer cells and associated phenotypically altered
non-malignant cells in the tumor microenvironment. These pose a
substantial hindrance to the optimal therapeutic management of the
disease1,2. Contemporary therapeutic strategies use cancer drugs, with
lower toxicity that specifically target aberrantly expressed or mutated
proteins and, in general. EGFR expression and mutations, KRAS muta-
tions, BCR-ABL fusions, andHER2 overexpression are such examples of
common therapeutic targets in cancer3. Unfortunately, not all cancers
and anti-cancer drugs are known to be associated with strong targe-
table genetic biomarkers. As such, it is concluded that the simple

relationship of drug targets or mutational status alone is incompre-
hensive for predicting the efficacy of specific targeted therapies4,5.
Furthermore, administering a targeted therapy without considering
drug resistance as a consequencemay lessenpatient survival. The drug
resistance might be manifested through clonal expansion under
treatment-induced selective pressure or from alternative signaling
pathways that sustain tumor growth6. As such, early inference of drug
response based on pretreatment molecular portraits of cancer has
become a necessity2,7.

In recent years, the availability of large-scale pharmacogenomic
databases has propelled predictive personalized oncology research2.
Cancer Cell Line Encyclopedia (CCLE),8 Genomicsof Drug Sensitivity in
Cancer (GDSC)9, and Cancer Therapeutics Response Portal v2
(CTRPv2)10 are noteworthy among these. These high-throughput
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screening studies constitute an expansive knowledge base comprising
high-throughput screening studies entailing more than 1000 cell lines
and several hundreds of anticancer drugs2. Concurrently, The Cancer
Genome Atlas (TCGA)11 serves as another rich database featuring gene
expression profiles of mostly primary tumors spanning multiple can-
cer types, with associated clinical metadata and drug response anno-
tations. Thiswealth of data has enabled drug responsemodeling based
on molecular profiles. Various machine learning methods have been
proposed for drug response prediction in cancer. Jia et al. proposed a
deep variational autoencoder for imputing drug response through
compression of multiple genes into latent vectors in low dimensional
space12. Ammad-Ud-Din, Muhammad, et al.13 reported a kernelized
bayesianmatrix factorization-based drug response prediction through
incorporating prior knowledge of pathway-drug associations. Another
approachutilizedmatrix factorizationwith similarity regularization for
drug response prediction in cell lines by employing chemical struc-
tures of drugs and gene expression profiles14. Chang and colleagues
proposed CDRscan, a convolutional neural net that leverages muta-
tional signatures for predicting drug effectiveness15. Sakellaropoulos,
Theodore, et al. reported gene expression data based deep neural
network for drug response prediction that outperforms ElasticNet and
Random Forest16.

By carefully surveying these methods, we identified two critical
scopes for improvement. First, most of the past studies do not con-
sider the structural properties of drugs as features (explanatory vari-
ables in predictive tasks). As a result, the machine learning models
learn suboptimally and fail to make predictions on drugs that are not
part of the training data. Second, gene expression levels are con-
sidered as independent variables, ignoring their pathway-specific
combinatorial implication. Since most targeted therapies work
through pathways, disregarding the pathway resolution causes over-
emphasis on machine learning techniques. Past studies have demon-
strated the utility of using pathway enrichment scores for various
downstream analyses, as opposed to gene expression values17,18.
Notably, in our previous works, we have shown how pathway projec-
tion facilitates bettermodeling of biological processes18,19. As an added
advantage, data integration based on pathway enrichment scores
mitigates batch-effects20. While single-cell RNA-seq (scRNA-seq)
enables the characterization of cellular heterogeneity in tumors, there
is very little visible effort to leverage this fine-grained molecular
information to predict drug response at sub-clonal resolution. This is
primarily becausemost available training data, as indicated above, are
bulk expression profiles, and training on bulk RNA-seq and testing on
scRNA-seq is expected to give rise to misleading predictions. Pathway
projections of scRNA-seq/bulk RNA-seq profiles reasonably alleviate
this problem. Notable in this regard is the work by Suphavilai, Chaya-
porn, et al.,21 that describes a drug response prediction approach in
head and neck cancer, leveraging scRNA-seq profiles. The authors,
however, did not explore the utility of drug descriptors to generalize
the prediction model.

In this work, we developed a deep neural network (DNN) based
framework named Precily to predict drug response in both in vitro
and in vivo settings. For model training, we made use of cell line-
based high-throughput screening data (sources: CCLE, GDSC and
CTRPv2). Convinced by the reproducibility and overall performance
of the cell line model on unseen data (bulk and single-cell RNA-seq),
we explored similar prediction tasks pertaining to in-house prostate
cancer (PCa) cell lines and animal models under differential treat-
ment conditions. As a proof of principle, we first evaluated Precily
on differentially treated PCa cell lines. To ensure the cross-sample
predictability of our model, we examined our LNCaP xenograft
dataset mirroring in vitro treatments. For this, we utilized LNCaP
xenografts from a PCa progression study where the tumors were
harvested at different stages of treatment resistance. Precily pre-
dictions revealed clinically and biologically relevant associations of

drugs and pathways in the context of treatment resistance and
sensitivity. We also evaluated the utility of Precily in predicting
response for drugs that had never been seen by the trainingmodels.
For this, we considered metformin and orlistat, which are used for
the treatment of type 2 diabetes22 and obesity23, respectively but
also are found to have therapeutic potential in PCa. Finally, we used
tumour RNA-seq data and the recorded clinical treatment response
information from TCGA to validate the possibility of extrapolating
our approach in precision oncology. We benchmarked the effi-
ciency of themodel, trained on patient samples from TCGA on RNA-
seq profiles of pre-treatment, and matched post-relapse drug-
resistant BRAF mutant melanoma patients. Our study connects a
systematic drug response prediction pipeline with layered in vitro
and in vivo comparisons involving cell lines, xenografts, and patient
data, which is the most important prerequisite for the clinical
implementation of such approaches.

Results
Precily enables reproducible drug response prediction in cancer
cell lines
In this study, we present Precily, a deep neural network-based frame-
work to model drug response using gene expression data in both
in vitro and invivo settings. For this,we leveragedbulkRNA-seqdata of
cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) for
machine learning based prediction. For data preparation,first, for each
of the 550 cancer cell lines CCLE, with available drug response data in
GDSC, we computed pathway enrichment scores for 1329 canonical
pathways from MSigDB24. Second, we obtained numeric molecular
descriptors for 173 anti-cancer compounds (reported in GDSC) using
SMILESVec25, by supplying simplified molecular-input line-entry sys-
tem (SMILES) notation, retrieved using PubChemPy26. The summary
statistics of the dataset used are provided in Supplementary Table 1.
We found 550cell lines commonbetween both the databases screened
against 173 unique molecular compounds for which SMILES notations
were available. SMILESVec descriptors are vectors of size 100. We
treated pathways and drug features as explanatory variables (aka.
independent variables), while LN IC50 estimates as the decision vari-
able (aka. dependent variable) under a regression framework. Both
explanatory and decision variables are continuous in nature. The
samples can be best understood as (cell line, drug) tuples with their
responses. Here cell lines are encoded by pathway enrichment scores
as discussed above (Fig. 1a). We used the open-source software Keras27

to build a DNN architecture comprising 2−6 hidden layers, tunable as a
hyper-parameter (Fig. 1b). For model building, we followed cross-
validation best practices and reported the performance on an inde-
pendent test set. We realized that random train-validation-test split-
ting of (cell line, drug) tuples introduces data leak issues that do not
mirror practical applications. In this way, training data becomes privy
to cell line gene expression profiles and its sensitivity to some drugs,
thereby making it rather easy to predict its sensitivity for a new drug.
An analogous possibility is unlikely in clinical settings. Inferring drug
responses in patients cannot be prejudiced upon accounts of past
responses. In such a scenario, treatment naive cases cannot be tackled.
To this end, we split the dataset based on the cell lines so that no cell
line is common among the training, validation, and test sets. We
compared our framework, named Precily, with twowell-citedmethods
— Cancer Drug Response prediction using a Recommender System for
single-cell RNA-seq (CaDRReS-Sc)by Suphavilai, Chayaporn, et al.21 and
another method by Sakellaropoulos, Theodore, et al16. Both the
methods utilize gene expression profiles for drug response prediction.
We also considered traditional machine learning methods — random
forest (RF) and ElasticNet, which have been used by previous studies
for drug response prediction28–30. As a baseline, we evaluated the
performance of RF, ElasticNet and Precily models using expression
levels of 500 genes (as opposed to pathway score matrix), selected
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based on the squared coefficient of variation (CV2). On held out data,
Precily based predictions attained the highest correlation with ground
truth, closely followedbyCaDRReS-Sc. Figure 1c showsdistributions of
Pearson’s correlation coefficients (ρ) across drugs, indicating the
coherence between predictions by different methods and the ground
truth LN IC50 values. The reason for presenting correlations at the
level of drugs is that a major work16, we considered for comparisons,
trained drug specificmodels using off-the-shelf H2Omachine learning
modules. In this way, one needs to manage one model for each com-
pound. This approach is suboptimal since it does not leverage struc-
tural information of the compounds for prediction. For a global
picture, we pooled our predictions across drugs and cell lines and
obtained a Pearson’s correlation coefficient value of 0.88 (R2 = 0.77;
P-value < 2.2e-16) (Fig. 1d).

While GDSC primarily catalogs anti-cancer drugs, the Cancer
Therapeutics Response Portal v2 (CTRPv2) database features an
assorted set of small molecules comprising tool compounds, probes
and drugs, including US Food and Drug Administration (FDA)-
approved cancer therapeutics10. We reciprocated a similar analysis of
CCLE/GDSCon the CCLE/CTRPv2 combination. Notably, only 68 drugs
were found common between GDSC2 and CTRPv2 datasets (Supple-
mentary Fig. 1a). Further, we compared the distribution of LN IC50
values from GDSC2 and CTRPv2 datasets (Supplementary Fig. 1b).
Gross differences were observed, which prevented us from integrating
the two. Precily yielded a Pearson’s correlation coefficient value of
0.84 (R2 = 0.70; P-value < 2.2e-16) (Fig. 1e), whereas CaDRReS-Sc
obtained ρ =0.83 (R2 = 0.68; P-value < 2.2e-16) (Supplementary
Fig. 1c). Taken together, our analyses suggest that sensitivity to
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Fig. 1 | Illustration of the predictive analysis workflow of Precily. a Schematic
workflow depicting the data processing pipeline of Precily. The first step
involved the processing of training data. The RNA-seq gene expression (RSEM
TPM) profiles from Cancer Cell Line Encyclopedia (CCLE) were subjected to
pathway score transformation using GSVA. This GSVA score matrix was inte-
grated with the drug descriptors obtained in the form of SMILES embedding for
each compound. b Model architecture. The second step was the training of the
ML model on this data, comprising GSVA scores and drug descriptors as an
explanatory variable set and natural log-transformed IC50 values sourced from
the GDSC database as the response variable. A deep neural network (DNN) from

the Keras platform was used to perform the regression task of predicting drug
response. c Comparison of drug response prediction across different approa-
ches. Barplot shows the distribution of Pearson’s correlation coefficients for
predicted vs. observed LN IC50 values for individual drugs (n = 173). Data are
presented as mean values + /− SEM (Standard Error of the Mean). d Scatter plot
demonstrating the performance of Precily across all cell line-drug pairs in the
CCLE/GDSC test data. P-value was calculated using a two-sided t-test. e Scatter
plot demonstrating the performance of Precily across all cell line-drug pairs in
the CCLE/CTRPv2 test data. P-value was calculated using a two-sided t-test.
Source data are provided in the Source Data file.
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anti-cancer therapy can be predicted in cancer cell lines with reason-
able accuracy and reproducibility.

Drug response prediction leveraging single-cell expression
profiles
Single-cell RNA sequencing (scRNA-seq) technologies have refined our
appreciation for intra and inter-tumoral heterogeneity across cancer
types19. While scRNA-seq has been adopted as amethod of choice for a
large number of clinical studies, we are yet to fully exploit it to predict
treatment outcomes at subclonal resolution by factoring in intra-
tumor heterogeneity. To demonstrate the potential of Precily in pre-
dicting drug response at a single-cell level, we used single-cell datasets
from two existing studies. First, we used scRNA-seq data produced by
Kinker, G. S. and colleagues for 207 cancer cell lines, of which 116 cell
lines overlap with the CCLE dataset31. We re-trained our CCLE/GDSC
model such that the set of Kinker, G. S. et al. cell lineswas never used in
model training. We applied thismodel to the Kinker, G. S. et al. dataset
and achieved a Pearson’s correlation coefficient=0.85 (R2 = 0.73; P-
value<2.2e-16) (Fig. 2a). Further, we benchmarked our model using a
second scRNA-seq dataset from a previously published study by Lee
et al.32 consisting of treatment-naive metastatic breast cancer cells
(MDA-MB-231) and a population of cells that had gained sensitivity to
paclitaxel, after a drug-holiday period. In this study, the metastatic
MDA-MB-231 cells were exposed to a paclitaxel drug. Most of the cells
died after five days of exposure. However, some of the residual cells,
cultured in drug-free medium after withdrawal of the drug, pro-
liferated and established clones. Notably, these cells became more
sensitive to paclitaxel on re-exposure. Precily trained on CCLE/GDSC
data could correctly predict the in vitro therapeutic response from
scRNA-seq data of the paclitaxel sensitive MDA-MB-231 cell popula-
tion (Fig. 2b).

Analysis of diverse treatment strategies in prostate cancer
cell lines
Despite therapeutic advances in PCa, treatment options remain lim-
ited, and the emergence of treatment resistance poses significant
challenges. PCa is themost commonmalignancy inmen and is curable
if localized. Yet, for patients presenting with metastatic cancer, men
are treated with androgen deprivation therapy (ADT) to exploit the
unique dependence of PCa on androgen signaling for growth and
progression. Although ADT is initially effective in most patients, the
effect is temporary and cancer cells become resistant with the emer-
gence of castration-resistant prostate cancer (CRPC). To which either

taxanes or additional androgen targeted therapies such as enzaluta-
mide are added with modest survival benefits, however, acquired
resistance to these drugs eventually emerges. Thus, appropriate drug
selection and combination remain crucial in the dynamically evolving
landscape of cancer to derive maximum benefit for the patients33–35.
Therefore, there is an unmet need for the selection of optimal drugs
for PCa treatment36,37. We independently validated the CCLE/GDSC
trained Precily model on our PCa datasets. We examined the con-
cordance between our in-house gene expression data of PCa cell lines
(i.e., LNCaP, DU145, PC3 and VCAP) with the same cell lines from the
CCLE dataset and obtained a Pearson correlation in the range of 0.96
to 0.98 (Supplementary Fig. 2). Precily was applied on bulk RNA-seq
profiles of five untreated PCa cell lines, each with two biological
repeats.Wepredicteddrug responses for eachof these ten samples for
155 drugs tested against PCa cell lines in the GDSC database targeting
various cellular pathways. Androgen Receptor (AR) positive PCa cell
lines (LNCaP, DUCAP, and VCAP) were predicted to be relatively more
sensitive to the drugs as compared toARnegative cell lines (DU145 and
PC3). The median Z-scores associated with predicted LN IC50 values
(across GDSC drugs) for LNCaP, DUCAP, VCAP, DU145, and PC3 were
recorded as −0.17, −0.03, 0.02, 0.17 and 0.06 respectively (Fig. 3a, b).
Of these five cell lines, LNCaP cells were predicted to be the most
sensitive to these drugs (Fig. 3b). Precily predictions clearly high-
lighted the potential sensitivity of LNCaP cells to PI3K/mTOR signaling
pathway targeting drugs such as broad spectrum of AKT inhibitors,
ipatasertib, afuresertib, and uprosertib, and in particular, the mTORC
inhibitor AZD2014 (Supplementary Fig. 3a, b). We noted elevated
GSVA pathway scores for mTOR-related signaling among LNCaP gene
expression profiles, which may explain the predicted sensitivity to
these drugs (Supplementary Fig. 3). For this analysis, we removed the
concerned cell lines under testing from the CCLE/GDSC training data.
When comparing the predicted LN IC50valueswith the corresponding
GDSC values across drugs, we observed a Pearson correlation of 0.86
(two-sided t-test P-value < 2.2e - 16) for the two biological replicates of
LNCaP cells, respectively (Fig. 3c).

We were further interested in testing how the drug response
predictionwas alteredwhen LNCaP cells were cultured in the presence
of the androgen receptor (AR) agonist dihydrotestosterone (DHT) as
compared to the vehicle control (VEH) in androgen deprived media
conditions; and furthermore, how treatment with the clinically
approved AR antagonists bicalutamide (BIC), enzalutamide (ENZ), and
apalutamide (APA) under these conditions affected the predicted
sensitivity pattern. Predicted sensitivity of a broad spectrum of anti-
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cancer drugs on treated samples may represent putative altered phe-
notypic landscapes, indicating therapeutic consequences. In clinical
settings, evaluation of post-treatment sensitivity patterns may be
crucial for identifying pairing therapies to combat the diverse spec-
trum of PCa resistance. Overall, LNCaP cells cultured with DHT were
predicted to be more sensitive to therapeutic drugs as compared to

cells cultured without DHT and AR antagonists (Fig. 3d, Supplemen-
tary Fig. 4a). The cells cultured in the presence of DHT were observed
to have elevated GSVA scores for the proliferation-associated path-
ways, which would be expected as DHT is known to stimulate PCa cell
proliferation38,39. This supports the notion that actively proliferating
cells are more sensitive to specific anti-cancer drugs, while cells in a
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cytostatic or quiescent state are more resistant (Fig. 3e). Notably, the
addition of AR antagonists in the presence of DHT did not fully reverse
the predicted DHT conferred drug sensitivity. In fact, our model pre-
dicts that even in the presence of ENZ, cells remain sensitive toward
cisplatin, docetaxel and paclitaxel, the latter two mainstay che-
motherapeutic drugs currently in clinical use for advanced PCa
patients (Fig. 3f, Supplementary Fig. 4b). In contrast, the presence of
ENZ is predicted to decrease sensitivity towards a subset of drugs, for
example, the PI3K/mTOR pathway inhibitors uprosertib and afur-
esertib (Supplementary Fig. 4c). These findings allude to the use of
Precily in identifying potential combinatorial therapies. An exciting
application of our approach could be predicting response to unseen
compounds that are not part of the training data. To demonstrate the
same, we considered metformin and orlistat, two drugs that are pri-
marily used for type 2 diabetes and obesity, respectively; however, a
rising number of reports suggest their therapeutic potential in some
cancers. Precily based prediction of the sensitivity of LNCaP cell line to
these drugs was found to be consistent at a relative scale (Fig. 3g, h).

Precily predictions in xenografts concurwith broadmechanistic
reasoning
Xenografts are useful in vivo tumor models for directly investigating
therapeutic response and predicting anti-cancer drug response in
patients with cancer of a similar phenotype. As such, we evaluated our
ability to predict drug response in cell line derived xenografts.Weused
our bulk RNA-seq data from LNCaP xenografts derived from a large
and well-annotated PCa progression study investigating responsive-
ness and subsequent resistance to therapies targeting the AR. LNCaP
xenograft tumor establishment and initial growth are dependent on
androgens in male mice (PRE-CX). Upon castration, AR activity and
tumor growth are suppressed (POST-CX), however, this initial
responsiveness to castration reproducibly gives way to castration-
resistance (CRPC). Further treatment of CRPC with ENZ initially pro-
vides a therapeutic response (ENZ Sensitive; ENZS), however, resis-
tance emerges with time (ENZ Resistant; ENZR) (Fig. 4a). Using CCLE/
GDSC trained Precily model, we predicted the drug response for each
of the 54 samples across this spectrum of successive therapeutic
responsive and resistance states. The LNCaP xenograft tumor samples
clustered into three main groups based on their overall predicted
sensitivity to the 155 drugs (tested in the GDSC study against PCa cell
lines) in the analysis (Fig. 4b, Supplementary Fig. 5a). Cluster 1 samples
had the most resistant tumors, which correlated to their lower pro-
liferative index. Cluster 1 predominantly consisted of ENZ-treated
tumor samples (10 of the total 15 ENZR and all 12 ENZS samples). In
contrast, cluster 3 samples had the highest predicted overall sensitivity
to the 155 drugs, which may be attributed to their higher proliferative
index, indicated by higher GSVA pathway scores for cell proliferation-
associated gene sets (Fig. 4c, d). ENZR tumors were distributed across

all three clusters, thereby indicating heterogeneous outcomes of the
treatment. We hypothesize that ENZ resistance is acquired through
different underlying mechanisms and may be inflicted with the con-
tribution of stromal components in the tumor microenvironments.
The indication of multiple ENZ resistance mechanisms was strength-
ened by the multimodal distribution of predicted LN IC50 for ENZR
tumors compared to the uniform distribution in the case of ENZS
tumors (Fig. 4e). In contrast to ENZS, the most resistant sample type,
ENZR samples were predicted to develop (regain) some level of sen-
sitivity to a subset of drugs. ENZR samples tended to have higher GSVA
scores of proliferation-associated pathways relative to ENZS samples,
however, this did not reach statistical significance (Fig. 4f). ENZR
tumors were predicted to be more sensitive to EGFR targeting drugs
than any other tumor type in the study (Fig. 4g), with sapitinib having
the most profound effect (Supplementary Fig. 5b). While we achieved
encouraging results on the drugs within our training set, we could also
predict biologically relevant responses for drugs not included in the
training set— APA, BIC, and ENZ. We observed sensitivity to AR
antagonists in the PRE-CX, POST-CX and CRPC groups. However, for
ENZ treated ENZS and ENZR groups, our model predicted a decline of
sensitivity. Our analyses suggest that responsive ENZS tumors from
mice actively treated with ENZ are unlikely to benefit from additional
AR antagonists (Fig. 4h).

Predictability of clinical response in patients
The Cancer Genome Atlas (TCGA) features a large compendium of
omic datasets spanning multiple cancer types with gene expression
profiles of mostly primary patient tumors and clinical response infor-
mation. The clinical drug response data includes patient demo-
graphics and responses to administered drugs. While sticking to the
Precily approach, we aimed to model complete/partial versus non-
response in TCGA patients. After filtering and preprocessing, we were
left with 3108 patient-drug combinations with recorded clinical
responses. These entailed 1443 unique patients (multiple drugs were
administered to some patients) and 139 unique drugs, representing 29
cancer types. Given the bewildering diversity of cancer genomes and
compound structures, these numbers are clearly inadequate. We,
therefore, performed a pooled analysis of the data, agnostic of cancer
types/stages.Our formulation of themodeling task allows learning and
predictionon virtually any combination of sample-drug pairs. The data
matrix prepared for machine learning featured 1427 explanatory vari-
ables (1327 pathways plus 100-sized drug descriptor vectors). Due to
the data paucity, unlike cell lines, in this case, we used AutoML, the off-
the-shelf R library by H2O.ai (https://docs.h2o.ai/h2o/latest-stable/
h2o-docs/automl.html)40 to build a drug response classifier on the
basis of tumor bulk RNA-seq data from TCGA. The summary statistics
of the dataset used are provided as supplementary data (Supplemen-
tary Table 2). 90% of the complete data (3108×1427 dimensional

Fig. 3 | Analysis of drug response prediction in prostate cancer (PCa) cell lines.
a Heatmap showing predicted LN IC50 (Z-score) for 155 drugs across five PCa
baseline cell lines highlighting PI3K/mTOR signaling targeting drugs. The lower the
LN IC50, the more sensitive a sample is predicted to a drug. Color bars indicate
different cell lines. Euclidean distance was used for grouping cell lines. b Ridgeplot
showing the overall distribution of predicted LN IC50 (Z-score) across five PCa cell
lines, while pooling their predicted drug sensitivities across biological replicates.
c Scatterplot depicting Pearson correlation (ρ) betweenobserved and predicted LN
IC50 for the LNCaP cell line. The line color indicated two biological replicates of the
LNCaP cell line. P-valuewas calculated using a two-sided t-test. Shaded areas depict
a 95% confidence interval. dHeatmapof predicted LN IC50 (Z-score) of LNCaP cells
in the presence and absenceof androgens (DHT) andAR antagonists (ENZ, BIC, and
APA) to 155 drugs. Euclidean distance was used for grouping samples. e Boxplots
depicting the distribution of GSVA scores of proliferation-related pathways in the
presence and absence of DHT. Notably, n = 12 pathways and n = 48 samples origi-
nating from n = 8 treatment groups (DHT, BIC.DHT, ENZ.DHT, APA.DHT, VEH,

BIC.VEH, ENZ.VEH and APA.VEH) have been considered for this analysis. P-values
were obtained from the two-sided Wilcoxon rank-sum test. f Boxplot depicting
predicted LN IC50 for DNA replication targeting drugs (n = 15) across all treatment
conditions (n = 8). Cisplatin is denoted using darkred colored filled triangle and
other drugs are represented using grey filled circles. P-values were obtained from
the two-sided Wilcoxon rank-sum test. g Boxplot showing the distribution of pre-
dicted LN IC50 values by n = 5 pre-trained models (based on cross-validation and
hyperparameter tuning) for two drugs, metformin and orlistat. P-value was
obtained by using a two-sided t-test. As expected, the direction of the relative
difference in drug sensitivity is captured correctly even at the log scale. The
structure of these two drugs, along with observed IC50 values is also depicted in h.
In all boxplots (e, f, g), themiddle horizontal line represents themedian value. Each
box spans the lower quartile to the upper quartile. The whiskers indicate the
minimum and maximum values within 1.5 times the IQR. Source data are provided
in the Source Data file.
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matrix) were used for 5-fold cross-validation and hyperparameter
tuning,while the remaining 10%were held out for independent testing.
AutoML evaluated a total of 34 models (including machine learning,
deep learning, boosted, and ensemblemodels) and offered ‘Extremely
Randomized Trees’ (XRT) as the best model (Supplementary Data 1).
Our train-validation-test split ensured there were no overlapping

patients in the datasets. XRT obtained an AUC-PR of 0.85 on the test
data (Fig. 5a). We tested if the incorporation of cancer stage informa-
tion improves drug response predictions. To our surprise, its inclusion
disadvantaged the model performance (AUC-PR = 0.79), suggesting a
lack of objectivity in cancer staging. Notably, among the 34 tested
classifiers, the best variant of the deep neural network ranked 19th.
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This can be explained by the paucity of patient data. As expected, a
classifier variant of the Precily DNN architecture yielded a suboptimal
AUC-PR of 0.77. Independently, we evaluated if drug response prob-
ability can be used as a yardstick for survival risk stratification. Sig-
nificant improvement in overall survival was observed in patients
administered with drugs that the model predicted to be effective
(Fig. 5b). We used the median of response probability as a cut-off to
create two groups for the survival analysis. As an independent eva-
luation, we assessed the association of Precily predictions with patient
survival, in the presence of other common covariates (cancer type and
stage). Amultivariate cox regression analysis yielded a Likelihood ratio

test P-value =< 2.2e-16. The covariate Precily predicted probability of
response yielded a P-value = 0.00135 (Wald test) indicating its inde-
pendent association with survival. Worth highlighting the sparse
availability of data at the resolution of cancer/drug/stage, whichmakes
it difficult to gauge the clinical applicability of our patient model
(Supplementary Fig. 6a, b). Group wise contingency tables comparing
predicted and ground truth responses are shown in Supplementary
Fig. 6c, d. All three BRCA tumour-drug pairs (TCGA-A8-A08O-Ana-
strozole; TCGA-A8-A08O-Vinorelbine; TCGA-Z7-A8R5-Paclitaxel) that
weremapped toGroup 2 (poor survival), weremarkednon-responders
in TCGA. TCGA-A8-A08O and TCGA-Z7-A8R5 were stage IV and stage

Fig. 4 | Analysis of drug response prediction in LNCaP derived xenografts.
a Overall schematics of the experimental setup of LNCaP xenograft-based PCa
progression study with indicated treatments, therapeutic response, and ther-
apeutic resistance stages. Solid lines represent growth and treatment resistance;
dotted lines represent treatment responsiveness. b Uniform Manifold Approx-
imation and Projection (UMAP) based projections of predicted LN IC50 showing
three separate clusters. We subjected predictions to principal component analysis
(PCA) and used the first 10 principal components as input for UMAP based
embedding. c Boxplots depicting the distribution of predicted LN IC50 (Z-score)
across three clusters. Each data point relates to a xenograft tumor sample-drug
pair, wherein a sample belongs to one of the clusters as shown in Fig. 4b (n = 24,
n = 9 and n = 21 samples from cluster 1, cluster 2 and cluster 3, respectively) and a
GDSC drug (n = 155). P-values were obtained from two-sided Wilcoxon rank-sum
test. d Boxplots showing the distribution of GSVA scores of proliferation-related
pathways (n = 12) across three clusters (n = 24, n = 9 and n = 21 samples from cluster
1, cluster 2 and cluster 3, respectively). P-values were obtained from the two-sided

Wilcoxon rank-sum test. e Ridgeplot showing the overall distribution of predicted
LN IC50 (Z-score) across tumor types. f Boxplots showing the distribution of GSVA
scores of proliferation-related pathways (n = 12) across tumor types (n = 9 PRE-CX,
n = 8 POST-CX, n = 10 CRPC, n = 12 ENZS and n = 15 ENZR). P-values were obtained
from the two-sidedWilcoxon rank-sum test.gBoxplotdepictingpredicted LN IC50
(Z-score) of EGFR signaling pathway targeting drugs. We examined n = 7 drugs
against 54 tumor bulk RNA-seq samples (n = 9 PRE-CX, n = 8 POST-CX, n = 10 CRPC,
n = 12 ENZS and n = 15 ENZR), in every possible combination. P-values were
obtained from a two-sided Wilcoxon rank-sum test. h Heatmap showing predicted
LN IC50 for three unseendrugsnot present inGDSC (BIC,APA, andENZ).Color bars
indicate tumor types and clusters as acquired through UMAP projections. In all
boxplots (c, d, f, g), the middle horizontal line represents the median value. Each
box spans the lower quartile to the upper quartile. The whiskers indicate the
minimum and maximum values within 1.5 times the IQR. Source data are provided
in the Source Data file.
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Fig. 5 | EvaluationofTCGAmodel efficiency. a Precision-recall curve representing
the performance of the best AutoML model on the TCGA test dataset. b Survival
analysis of a test dataset spanning multiple TCGA cancer types. Patients were
classified into twogroupsbasedon themedianvalue of thepredicted probability of
response with a P-value = 1.634292e-05 (log-rank test). We estimated the 5-years

survival probability of group 1 as 0.72 and group 2 as 0.28. c–e Bar plots showing
the probability of predicted response for drugs dabrafenib and trametinib in
patient 1, patient 2, andpatient 3, respectively. A red bar indicates the probability of
response for dabrafenib and a purple bar indicates the probability of response for
trametinib. Source data are provided in the Source Data file.
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IIIA patients, respectively. Out of 49 tumor-drug pairs, only sevenwere
non-responders, including these three pairs. Notably, there weremany
stage III patients in Group 1, of which most were responsive to the
treatment (Supplementary Data 2). One can tune the probability cut-
off to strike the desired balance between sensitivity and specificity.

Next, we applied the TCGA datamodel to an independent dataset
for which pre and post-treatment RNA-seq profiles and clinical
response informationwere available41.Wepredicted thedrug response
of RAF inhibitor (dabrafenib) and MEK inhibitor (trametinib) in three
pre-treatment and matched post-relapse BRAF-mutant RAF/MEK
inhibitor-resistant melanoma patients. The journeys of three patients
are documented in supplementary data (Supplementary Note 1).
Wagle, Nikhil, et al. reported the presence ofMEK2Q60P mutation, BRAF
Splice Isoform, and BRAF amplification in the post-treatment patient 1,
patient 2, and patient 3, respectively, as revealed through whole-
exome sequencing (WES) and RNA-seq. These alterations may be a
potential causeof conferring resistance toRAF/MEK inhibitors in these
patients41. Notably, our prediction results revealed a similar trend,
whereby our probability of response to dabrafenib and trametinib in
pre-treatment patient 1 and patient 2 was higher than post-treatment
(Fig. 5c, d). Furthermore, we were correctly able to predict these
patients as responders. This aligns with the original annotations of the
study as these patients are categorized as a partial response based on
Response Evaluation Criteria In Solid Tumors (RECIST)42. In contrast,
patient 3 was correctly predicted to be resistant to dabrafenib for both
pre and post-treatment samples (Fig. 5e). This is concordant with the
original study where this patient was categorized as stable disease
based on RECIST criteria.

Discussion
Predicting the drug response of cancer cells is of paramount impor-
tance in personalized oncology. In this study, we developed Precily, a
deep neural network (DNN) based framework to predict the response
to cancer therapy based on gene expression profiles and drug
descriptors. Due to the explicit use of pathway enrichment scores, our
model highlights the underpinning biological mechanisms contribut-
ing to drug resistance. Furthermore, the pathway-based prediction
approach allowed us to infer cellular fates upon treatment from single-
cell expression data accurately. This can enable drug response pre-
diction at sub-clonal resolution using tumor scRNA-seq data.

We evaluated Precily predictions by showing a reasonable corre-
lation between the experimental LN IC50 for LNCaP cells used in the
training data set and the model-predicted values. Further, we noted
that the PTEN negative LNCaP cell line was predicted to have an ele-
vated sensitivity to PI3K/mTOR signaling targeting drugs. Built on
pathway scores, Precily allows exploring the association between
pathway activities and drug response. This might help identify unex-
plored signaling pathways as potential therapeutic targets in PCa.
Notably, previous studies have broadly suggested that increased PI3K/
AKT/mTOR signaling is associated with sensitivity to PI3K inhibitors in
LNCaP cell lines and other PTEN null cancer cell lines. Furthermore,
mTOR inhibitors might be effective against PTEN null tumors43.

We further explored how drug sensitivity prediction indicated a
switch of cellular states into drug-responsive and resistant states in
LNCaP cells and xenografts. In the presence of androgens, LNCaP cells
were predicted to bemore sensitive to cancer therapeutics that target
highly proliferative cells. This is expected as androgens drive pro-
liferation in AR-positive PCa cell lines and xenografts38,39. AR antago-
nists are the primary treatment option for metastatic PCa, which
antagonize cellular androgen response pathways on a molecular level.
With AR antagonist treatments, LNCaP cells were predicted to have
pronounced similarities and differences for ENZ, APA, and BIC treat-
ments, mirroring the complex biological underpinning of the treat-
ment responses. A strong reversal by an AR antagonist of DHT
conferred sensitivity was observed for drugs targeting the PI3K/mTOR

pathway, with ENZ showing themost profound effect. In contrast, ENZ
treatment was predicted to further increase the DHT conferred sen-
sitivity to selected drugs, including cisplatin, docetaxel and paclitaxel,
while other AR antagonists may not, e.g. BIC and APA for cisplatin.
These predictions suggest that patients on active treatment with ENZ
may still benefit from added chemotherapy using cisplatin, while
patients on treatment with BIC or APA may not. These predictable
differential effects are important considerations for combinatorial
therapy to maximize the therapeutic benefit for a given patient while
minimizing detrimental side effects of chemotherapy affecting the
quality of life.

To further evaluate the applicability of the drug sensitivity pre-
dictions with Precily, we used data derived from our well-annotated
PCa xenograft model, following the progression from early androgen-
responsive to CRPC, and then to ENZ treatment responsive and ENZ
resistant states. The sensitivity predictions highlight changing vul-
nerabilities of the tumors in different stages of progression and
treatment. Notably, we observed that ENZR tumors are predicted to
develop a susceptibility to selected therapeutics providing a new
window of opportunity for therapeutic strategies. For example, our
model predicted sensitivity to specific drugs targeting the EGFR sig-
naling pathway in case of ENZ treatment, highlighting sapitinib as a
potential therapeutic for ENZ resistant patients.While prostate tumors
in an androgen replete setting are predicted to be highly resistant to
EGFR targeting drugs, a distinct vulnerability is developed during
progression to ENZR. As these drugs targeting the EGFR pathway are
approved for cancer treatment in other cancer types, this may facil-
itate the clinical evaluation of combination therapy in PCa patients
treated with ENZ or those that have developed ENZR. Previous studies
have suggested that a combination of ENZ and EGFR targeting inhi-
bitors might be an effective therapeutic strategy in overcoming ENZ
resistance44. Further laboratory and preclinical studies into the mole-
cular mechanism behind our predicted sensitivity pattern are needed
to confirm these findings.

Our evaluation of the TCGAmodel using anexternal BRAF-mutant
melanoma dataset resulted in clinically relevant predictions based on
tumor RNA-seq samples from the patients. The probability of response
for the patients classified in the partial response category was higher
than post-treatment due to acquired resistance to the first line of
therapy. This suggests that top drugs predicted by our method, for
example, cyclophosphamide and cisplatin, might serve as alternative
therapies in combination with other drugs to overcome acquired
resistance. This warrants further investigation.

The major advantage of the discussed framework is that the
associatedmodels can be used to infer drug sensitivity for virtually any
sample-drug pairs due to the use of numeric drug descriptors. First,
this approach enables us to pool cell-drug combinations across can-
cers, thus providing an opportunity to improve the model perfor-
mance. Second, the successful prediction by Precily of LNCaP
sensitivity to metformin and orlistat confirmed that Precily could be
potentially used to evaluate the efficacy of drugs that are not part of
the modeling task. Third, Precily based monotherapy sensitivity pre-
dictions can provide cues for clinically plausible combination thera-
pies. Thus, Precily can be employed as a first pass screening tool to aid
in clinical decisions.

A limitation of Precily is that at the level of individual drugs, cor-
relations between observed and predicted IC50 values were sub-
optimal. However, between drugs, the relative sensitivities are
captured reasonably well. We obtained promising results while testing
the approach on patient tumor data. However, there is a scarcity of
human cancer data with recorded clinical drug responses.With limited
data of assorted cancer types from TCGA, we developed and validated
a pan-cancer model for drug response prediction, which we believe
can be further substantiated with additional data curated from diverse
clinical trial studies.
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To summarize, our current work links bioinformatic predictions
of drug response to clinically explainable observations, both in in vitro
and in vivo settings. Given only a limited number of clinically relevant
molecular subtypes are known in case of PCa, drug response inference
based on tumor bulk expression profiles may be leveraged in fur-
thering pharmaco-genomic research.

Methods
Ethical approval
Animal studies were performed with the approval of the University of
Queensland and Queensland University of Technology (QUT) Animal
Ethics Committees (ethics approval number QUT/572/17) and in
accordance with accepted standards of humane animal care as out-
lined in the ‘AustralianCodeofPractice for theCareandUseofAnimals
for Scientific Purposes’ and the universities’ guidelines for the use of
laboratory animals.

In vitro prostate cancer (PCa) cell line experiments
The human prostate cancer cell lines LNCaP (CVCL_0395, ATCC #CRL-
1740 clone FGC), VCaP (CVCL_2235, ATCC #CRL-2876), DU145
(CVCL_0105, ATCC #HTB-81), PC3 (CVCL_0035, ATCC #CRL-1435) and
DUCAP (CVCL_2025, generous gift from Dr. Matthias Ness, VTT Tech-
nical Research Centre of Finland) were cultured in Phenol-red free
RPMI medium-1640 (Thermo Fisher Scientific/ Life Technologies,
#11835) supplementedwith 5% fetal bovine serum (FBS, Sigma#F2442)
in a humidified incubator at 37 °C and 5% CO2 and untreated samples
were harvested for RNA extraction during their exponential growth
phase. Cell lines were authenticated using STR (short tandem repeat)
analysis as described in the ANSI Standard (ASN-0002) 2012 by the
ATCC Standards Development Organization. Nine short tandem
repeat (STR) loci plus the gender determining locus, Amelogenin, were
amplified using the commercially available GenePrint®10 System kit
from Promega. The cell line samples were processed using the Applied
Biosystems® 3500 Genetic Analyzer. Data were analyzed using Gene-
Mapper® v5.0 software (AppliedBiosystems). Appropriate positive and
negative controls were run and confirmed for each sample submitted.
STRprofiles of query samples are compared to theATCCSTRDatabase
(or similar) to verify cell line identity. Cell lines with ≥80% match are
considered to be related i.e., derived from a common ancestry. For
regular mycoplasma testing in cell cultures, the MycoAlert® Myco-
plasma Detection Kit (Lonza, #LT07-318), a sensitive luciferase-based
biochemical test that detects the activity of mycoplasma enzymes, is
used according to manufacturer’s instructions. All cell lines were
checked against the list of knownmisidentified cell linesmaintainedby
the International Cell Line Authentication Committee (ICLAC).

For in vitro treatment experiments, LNCaP cells were seeded
and cultured for 72 h in a standard medium with 5% FBS. This was
followed by a 48 h incubation in androgen-depleted conditions
using medium +5% charcoal-stripped serum (CSS, Sigma #F6765).
Treatment with the androgen targeting drugs (ATTs) enzalutamide
(MDV3100, Selleck Chemicals, #S1250) (10 uM), bicalutamide
(Selleck Chemicals, #S1190) (10 uM), and apalutamide (Selleck
Chemicals, #S2840) (10 uM) was performed for 48 h, either in the
absence or presence of 10 nM dihydrotestosterone (DHT, dissolved
in EtOH).

LNCaP cells were seeded for 24 h into 96-well tissue culture plates
(Corning #COR3599) and treated with serial dilutions of the indicated
compounds. Cell viability as a function of metabolic activity was
measured by an AlamarBlue (Thermo Fisher Scientific #DAL1025)
endpoint assay according to the manufacturer’s instructions (fluores-
cence measured at 560/590 nm excitation/emission)45. Calculations of
half-maximal inhibitory concentration (IC50) after treatment with the
respective drugs were performed with GraphPad Prism. Each data
point was performed in triplicate and repeated in at least three inde-
pendent experiments.

Establishment of LNCaP xenografts
Five to six-week-old male NOD-SCID mice (Nonobese diabetic/
severe combined immunodeficiency, mutant inbred, NOD.CB17-
Prkdcscid/Arc) were sourced from the ‘Animal Resource Centre’
(Murdoch, Western Australia) and underwent a minimum one week
acclimatization period upon arrival. Mice were group housed in
individually ventilated cages at a 12 h light/dark cycle under specific
pathogen-free, temperature- (22–24 degrees Celsius) and humidity-
controlled (50–65%) conditions, fed standard chow (Specialty
Feeds, Australia) and water ad libitum. For the in vivo tumor pro-
gression study, xenografts were established by subcutaneous
injection of one million LNCaP cells (CVCL_0395, ATCC #CRL-1740
clone FGC) into the flank of anaesthetised mice (54 in total; iso-
flurane inhaled anaesthetic in oxygen). Tumor volume was mea-
sured thrice weekly using digital callipers; weight and clinical health
score tracked thrice weekly and daily, respectively. Submandibular
bleeds were undertaken weekly to collect blood (~100 ul) which was
used to track serum PSA (Prostate-Specific Antigen). At a tumor size
of ~200 cubic mm (mm3), mice were either surgically castrated (45
mice) or received mock surgery for the PRE-CX group (9 mice)
under aseptic conditions, whilst anaesthetised and provided
analgesic (carprofen). Tumors from the PRE-CX group (9mice) were
harvested when the ethical tumor size endpoint of 1000mm3 was
reached. Tumors from the POST-CX (post castration, 8 mice) group
were harvested one-week post-castration at primary serum PSA
nadir (GenWay-Biotech ELISA, as per manufacturer’s instructions).
CRPC (Castrate-Resistant Prostate Cancer, 10 mice) tumors were
harvested when PSA levels recurred to pre-castration levels or when
tumor burden reached 1000mm3 post-castration. For the enzalu-
tamide (ENZ) groups, treatment with 10mg/kg ENZ (oral gavage,
5 days/week) commenced as serum PSA began to rise post-
castration. Tumors were harvested either at secondary PSA nadir
(ENZS, 12 mice) while on ENZ treatment, with the remaining
tumours collected when PSA had recurred to pre-ENZ treatment
levels or when tumor volume reached ethical endpoint of 1000mm3

despite ENZ treatment (ENZR, 15 mice). Xenografts were rapidly
dissected, snap frozen in liquid nitrogen and stored at −80 °C; until
being homogenised in a pre-cooled TissueLyser (Qiagen) for RNA
extraction.

RNA extraction, library preparation, and bulk RNA-sequencing
For mRNAseq, total cellular RNA was extracted using the Norgen RNA
Purification PLUS kit #48400 (Norgen Biotek Corp., Thorold, Canada)
according to the manufacturer’s instructions, including DNase treat-
ment. RNA quality and quantity were determined on an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, USA) and Qubit®. 2.0
Fluorometer (Thermo Fisher Scientific Inc, Waltham, USA). Library
preparation and sequencing was performed using the Illumina TruSeq
Stranded mRNA Sample Prep Kit (strand-specific, polyA enriched,
Illumina, San Diego, USA) with an input of 500 ng − 1 ug total RNA
(RIN > 8), followed by paired-end sequencing with a read length of
100–150 bp and yielding about 30–60M read pairs per sample.

RNAseq raw data was processed through a custom-designed
pipeline. Raw reads were assessed with FastQC46, then trimmed
using TrimGalore47, followed by alignments to the human genome
(GRCh38 / hg38) and transcriptome (Ensembl.v.99 / Gencode.v.33,
Jan-2020) using the STAR48 aligner and read quantification with
RSEM49. For xenograft samples, STAR alignment was performed
against a chimeric human+mouse reference (mouse: GRCm38 /
mm10, Gencode.v.M24 / Ensembl.v.99, Jan-2020), followed by RSEM
read quantification. Only reads aligned to the human genome were
used for downstream analysis. TPM values from the RSEM output
were used for GSVA scoring. For predictions, we used averaged
GSVA scores of the biological replicates of LNCaP cell line under
different treatment conditions.
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Gene expression data of cancer cell lines
For machine learning based modeling of drug response measured by
half-maximal inhibitory concentration (LN IC50), we used publicly
available TPM (transcript per million) normalized RNA-seq gene
expression profiles of 1019 Cancer Cell Line Encyclopedia (CCLE)8 cell
lines quantified using the RSEM (RNA-Seq by Expectation-Maximiza-
tion) software. The corresponding drug response information for the
cell lineswas sourced from theGDSC2dataset of theGenomicsofDrug
Sensitivity in Cancer (GDSC) database9. In the GDSC2 dataset, some
drug-cell line pairs havemultiple LN IC50measurements. In such cases,
we averaged the LN IC50 values. The RNA-seq gene expression profiles
of 550 CCLE cell lines overlapping with the GDSC2 dataset cell lines
were used for the model training. This matrix contained 57820
Ensembl Gene IDs, which were converted into official gene symbols
using gencode.v19.genes.v7_model.patched_contigs.gtf annotation
file. This resulted inmultiple Ensembl gene IDs corresponding to some
of the individual gene symbols. We considered the average expression
in such cases. At this stage, our expression matrix comprised 54301
genes and 550 cell lines. This matrix was subjected to log2 transfor-
mation with the addition of a pseudo count of 1.

Tumor RNA-seq data
Analogous to cell lines, on tumor mRNA sequencing data from TCGA,
we modeled drug-response in terms of responder and non-responder.
TCGARNA-seq datawere downloaded from the BroadGDAC firehose50

encompassing 33 tumor types. We used Illumina HiSeq RNA-seq v2
data processed at the gene level using RSEM49. The clinical drug
response information for the patient samples was fetched from the
NCI Genomic Data Commons portal51. Drug names and response
information was collected from clinical metadata and rectified for
typographical and spelling errors and toharmonize commercial names
and molecular drug names. We categorized complete response and
partial response patients as responders. Patients with clinically pro-
gressive and stable diseases weremarked as non-responders. RNA-seq
gene expression profiles of cancer types with clinical response data for
fewer than two patients were excluded. At this stage, the filtered data
contained gene expression profiles for 29 cancer types. Then for
individual cancer types, scaled estimates from gene-level RSEM files
were transformed into TPM by multiplying with a factor of 1e6 fol-
lowed by log2 transformation with the addition of pseudo count 1. For
the patients with identical TCGA barcodes, we averaged their gene
expression profiles for downstream analysis.

Drug descriptor data
We obtained drug response information for 192 compounds from the
GDSC2 dataset for the 550 cell lines in the CCLE dataset and clinical
response information for 215 compounds for 1517 TCGA patients. The
chemical structure information for these molecular compounds was
retrieved in terms of a simplified molecular-input line-entry system
(SMILES) using PubChemPy26. However, SMILES were not available for
all the molecular compounds. As a result, we ended up with SMILES of
173 and 139 compounds for 550 CCLE cell lines and 1443 unique TCGA
patients, respectively. The SMILESVec python tool was used to convert
these SMILES into vector embeddings by utilizing data of embeddings
trained on Pubchem and embedding of size 100 25.

Pathway activity scores
To train models, we used pathway activity scores. We used the Gene
Set Variation Analysis (GSVA)17 R software package to compute GSVA
scores basedon the log2(TPM + 1) gene expressionmatrix for selected
gene sets fromMolecular Signatures Database (MSigDB)24 with min.sz
set as 5. We used the c2 collection of canonical pathways
(MSigDB.CP.v.6.1) consisting of 1329 gene sets. We integrated the
pathway scorematrixwith the vector embeddings of thedrug features.
Our final CCLE cell line training dataset constituted 80056 cell line-

drug combinations in rows and 1429 features entailing 1329 pathways
and drug features of vector size 100 for each molecular compound as
the explanatory variable and LN IC50 as the response variable in col-
umns. For TCGA patient data, gene expression profiles of individual
cancer types were transformed into pathway scores. The GSVA scores
of the samples where drug response information was available in each
cancer category were merged based on common pathways. The final
matrix consisted of 3108 patient-drug combinations and, 1427 features
(pathways & drug descriptors) and the response variable (respon-
der = 1, non-responder = 0).

Training models using CCLE RNA-seq cell line dataset
We formulated the drug response prediction task with genes/pathway
enrichment scores, in tandem with drug descriptors as a regression
problem. We utilized various machine learning techniques for
response prediction. We split the CCLE training dataset into a 90%
training set (72262 cell line-drug pairs) and a 10% test set (7794 cell
line-drug pairs) such that there was no overlap in the cell lines. We
employed k-fold cross-validation for hyperparameter tuning and
divided the training set into 5 non-overlapping folds. Our five valida-
tion sets comprised 14,761, 14,302, 14,769, 14,212 and 14,218 cell line-
drug pairs, respectively. The number of features — 1429 (pathway
enrichment scores and drug descriptors) were the same in training,
validation and test datasets. We used Random Forest implementation
from the R package ranger52. We performed a grid search on each fold
of the training dataset. For every fold, the mtry and number of trees
were varied from 1 to 10 (with the step size of 1) and 100 to 1000 (with
the step size of 100), respectively. We selected the five best models
with minimum Mean Squared Error (MSE) for each training data sub-
set. Finally, we trained five models (based on pre-learned hyperpara-
meters) on the entire training data using the parsnip R package53.
ElasticNet was implemented using the caret54 and glmnet55 R packages.
For each of the five training folds, the caret, by default, performs
bootstrapping 25 times to find out the optimal model based on the
minimumvalue of Root-Mean-Square Error (RMSE). These five optimal
models were retrained on the entire training dataset.

A deep neural network (DNN) was trained using the Keras fra-
mework. The DNN architecture comprised one input layer entailing all
features (pathway enrichment scores and drug descriptors) in the
dataset, followed by one hidden layer of size 512, with Rectified Linear
Unit (RELU) as an activation function.We kept thefirst two layers fixed.
We used the Keras Tuner library56 to find the optimal set of parameters
for our deep learning models. We employed Hyperband57 with 5-folds
cross-validation on training data to find the best hyper-parameters
based on validation loss. We tried the following hyper-parameters: the
number of layers varied between 2 and 6, and the number of neurons,
between 128 and 256 (with a step size of 4). The number of epochs was
set to 30. Dropout layers were added between the layers to avoid the
overfitting of the models. We tuned for drop-out rates (0.1, 0.2, 0.3,
0.4, 0.5). We used the ADAM optimizer with different learning rates
(1e-3, 1e-4 and 1e-5). We optimized Mean Squared Error (MSE) as the
loss function. Finally, five models were trained on the entire dataset
with fold-specific tuned hyper-parameters for 50 epochs with a batch
size of 128. These models were used for reporting performance on
independent test data.

For the model using genes as features (instead of pathways), the
only difference in the architecturewas the size of the input layer, which
was set to 600 (500 top highly variable genes and drug descriptors of
size 100). Of note, ranger and ElasticNet were run with the same
strategies discussed above.

Benchmarking of drug response predictions
We benchmarked Precily against previously published methods –

CaDRReS-Sc by Suphavilai, Chayaporn, et al.21 and another by Sakel-
laropoulos, Theodore, et al.16. CaDRReS-Sc is a machine learning
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framework that incorporates a matrix factorization-based recom-
mender system for drug response prediction. We applied CaDRReS-Sc
to the CCLE gene expression dataset and the corresponding drug
response information from the GDSC database. CaDRReS-Sc was run
withdefault settings. For the Sakellaropoulos, Theodore, et al.method,
we trainedmodels for individual drugs using the author recommended
parameters, except for the variance cut-off (varcut) parameter, where
we used a value of 10, to avoid late convergence. This was important
because, under this strategy, we had to train drug specific models. All
methodswere evaluatedon the samedata. Final performance hasbeen
reported in terms of Pearson’s correlation for predicted vs observed
IC50 value for individual drugs.

Processing of the CTRPv2 data
CTRPv2 features a sensitivity of various well established cancer cell
lines to an assorted set of small molecules comprising tool com-
pounds, probes and drugs, including US Food and Drug Administra-
tion (FDA)-approved cancer therapeutics.We obtained SMILES for 377
compounds reported in CTRPv210. For all these compounds, cell line
specific IC50 values were obtained from the PharmacoGx R package58.
We discarded IC50 outliers using the interquartile range (IQR) rule. At
this stage, our data constituted 153899 drug-cell line combinations in
rows and 1429 features, including pathway and drug features and LN
IC50 as the response variable in columns. The remaining steps
involved in evaluating the performance of Precily were kept identical
as in the case of CCLE/GDSC analysis. In this analysis, 90% training
dataset consisted of 138254 cell line-drug pairs and 1429 features
comprising pathway enrichment scores and drug descriptors and a
10% test set (15645 cell line-drug pairs and 1429 features comprising
pathway enrichment scores and drug descriptors). The five validation
sets comprised 27682, 27674, 27982, 27565 and 27351 cell line-drug
pairs, respectively. 1429 features were common across all five sets
(pathway scores and drug descriptors), respectively.

Training models using TCGA RNA-seq patient profiles
To predict drug response in terms of responder and non-responder,
formulated as a classification problem, we utilized the H2O AutoML40

framework in R for training the TCGA dataset. We split this dataset in
the ratio of 90% for training and 10% for testing. This 90% training
dataset was subjected to the h2o.automl() function with five-fold
cross-validation, ensuring therewas nooverlap of patients across folds
and amaximumnumber ofmodelswas specified as 20. This resulted in
automated training of 34machine learningmodels (moremodels were
automatically tested to reach convergence), including Deep learning,
DRF, GBM, GLM, XGboost, XRT, and stacked ensemble models. Deep
learning offered suboptimal performance (Supplementary Data 1) due
todata paucity. However, we tested Precily architecturewith necessary
changes to make it appropriate for constructing a classifier. In this
case, we used the sigmoid function in the last layer and binary cross-
entropy as the loss function. The splitting of data was kept intact, as in
the case of AutoML.

Survival analysis on TCGA test dataset
The processed TCGA dataset consisted of 3108 patient-drug combi-
nations. We conducted survival analysis on a 100% TCGA test dataset
of 293 drug-patient entities. We stratified the samples using the med-
ian value of the predicted probability of the response and computed
survival along with 5 year survival probability. For cox regression
analysis, we used coxph() function from the survival package in R59.

Performance metrics
We used two accuracy metrics to measure the performance of our
models for the regression task: the coefficient of determination (R2)
and Pearson correlation (ρ). R2 was calculated using the R caret54

package. For the TCGA dataset, we computed AUC, AUC-PR and
F1 scores.

Imputation of missing features
Weused an impute60 package fromR to impute if any pathway features
are missing in the input test dataset using the nearest neighbor-based
averaging approach.

ValidatingCCLE cell line trainedmodels using scRNA-seq data of
cell lines
The scRNA-seq cell line pre-QC UMI count dataset comprising 30314
genes and 56982 cells encompassing 207 cell lines was obtained from
Kinker, G. S. et al study31. This expression matrix was processed for
quality control using an R script (data_processing.R) from the same
study. At this stage, we were left with 53299 cells spanning 198 cell
lines. Thismatrix was transformed into TPM by scaling with a factor of
1e6 and dividing the UMI count of genes by the total UMI count of the
sample. The UMI counts are independent of gene length bias61. We
log2-transformed this normalizedmatrixwith the addition of a pseudo
count of 1. The gene expression values of the same cell lines were
averaged. This matrix was converted into pathway scores using GSVA
with default parameter settings. Our final validation set consisted of
17279 drug cell line combinations entailing 116 cell lines that over-
lapped with the cell lines featured in the GDSC2 dataset and tested
against 173 drugs.

Predicting the response of paclitaxel drug inMDA-MB-231 single
cells using CCLE cell line trained models
Lee et al. dataset was obtained by processing FASTQ files of MDA-
MB-231 cells from SRA id SRP040309. We align FASTQ files using
STAR aligner48 with GRCh37 reference genome and GRCh37 GTF file
from Ensembl (release 75)62. To estimate gene expression, we used
HTSeq-count63. The HTSeq generated read counts were transformed
into TPM values by dividing raw counts by gene length, then scaling
with a factor of 1e6 and dividing by total read counts in the sample.
We discarded the genes for which gene length was not retrieved by
the EDASeq R package64. This was followed by the conversion of
Ensembl gene IDs to official gene symbols using Homo_-
sapiens.GRCh37.75.gtf annotation file. We retained genes having a
TPMof at least 1 in at least 10% of samples. This matrix was subjected
to log2 transformation with the addition of pseudo count 1. We
averaged gene expression values of five samples each of naive,
stressed, and cells more sensitive to paclitaxel, respectively and
converted them into pathway scores using GSVA. We predicted drug
response for treatment-naive and population of cells more sensitive
to paclitaxel in terms of LN IC50 values.

Validating TCGA data trained models using BRAF-mutant mel-
anoma patient profiles
We used publicly available Reads Per Kilobase of transcript per million
mapped reads (RPKM) RNA-seq profiles of BRAF mutant melanoma
patients for drug response prediction. This dataset was comprised of
six paired patients for which RNA-seq was performed before and after
treatment with RAF or RAF +MEK inhibitors during disease progres-
sion. This dataset (Wagle, Nikhil, et al. dataset41) also included therapy
response information. For our analysis, we transformed RPKM nor-
malized RNA-seq profiles to TPM by dividing each RPKM value by the
sum of the RPKM values for all genes in the sample andmultiplying by
one million65. The TPM normalized matrix was log2 transformed with
the addition of a pseudo count of 1. The resulting matrix was trans-
formed into pathway scores using GSVA. For the three patients for
whom information on the mechanism of acquired resistance to dab-
rafenib/trametinib was available, we predicted a therapeutic response
to dabrafenib and trametinib.
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Data visualization
For data visualization, plots were generated in Prism 9.0.0 (GraphPad)
and in R with ggplot2 (3.3.5), pheatmap (1.0.12), ggpubr (0.4.0) and
ggridges (0.5.3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The bulk RNA-seq data of 5 PCa cell lines (LNCaP, VCaP, DU145, PC3,
DUCAP) generated in this study have been deposited in the NCBI GEO
database under accession code GSE211721. The bulk RNA-seq data of
the LNCaP cell line after treatment with AR antagonists generated in
this study have been deposited in the NCBI GEO database under
accession codeGSE211781. The bulk RNA-seq data of LNCaPxenografts
comprising 54 samples spanning different treatment groups (PRE-CX,
POST-CX, CRPC, ENZS and ENZR) generated in this study have been
deposited in the NCBI GEO database GSE211856. The CCLE, GDSC,
TCGA, and CTRPv2 datasets are publicly available. The CCLE RNA-seq
dataset was downloaded from https://sites.broadinstitute.org/ccle/.
Drug response data was sourced from the GDSC website https://www.
cancerrxgene.org/. TCGA data were downloaded from Broad GDAC
Firehose (https://gdac.broadinstitute.org/). The drug response infor-
mation for the CTRPv2 dataset (https://portals.broadinstitute.org/
ctrp.v2.1/) was obtained from the R package PharmacoGx. The pre-QC
UMI count scRNA-seq cell line datawas obtained fromBroad Institute’s
single cell portal accession number SCP542 (requires login). Another
scRNA-seq data of MDA-MB-231 cell line under differential treatment
conditionswasobtained fromaccessionno. SRP040309. BulkRNA-seq
data of melanoma was obtained from NCBI GEO GSE77940. To com-
pute pathway enrichment scores, we downloaded a collection of
canonical pathways (v.6.1) fromMsigDB (http://www.gsea-msigdb.org/
gsea/msigdb). Source data are provided with this paper.

Code availability
All source codes are available at Github https://github.com/
SmritiChawla/Precily which is linked with Zenodo https://doi.org/10.
5281/zenodo.7024834 66.
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