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Abstract—The purpose of sonar is to detect the stealthy
target in shallow water. The main barrier to locating the target
is sonar’s self-noise. Existing subspace-based noise suppression
methods typically employ eigenanalysis-based methods involving
high computational complexity. Recent approaches based on
compressed sensing (CS) or sparse representations (SR) are
computationally efficient. It is not straightforward to extend
existing CS/SR-based methods for self-noise cancellation as, first,
the energy of interference is much higher than the target,
and second, it also exhibits similar sparsity properties. This
work presents a novel method to combine the advantages of a
subspace-based noise cancellation approach with low complexity
of working with fewer CS measurements. Both target recovery
and self-noise cancellation are done in the compressive domain
only. Experimental results demonstrate the robustness of the
proposed approach for both narrowband and broadband targets
at very low signal-to-interference-noise (SINR).

Index Terms—Self-noise cancellation, compressed sensing, un-
derwater acoustics, sensor array

I. INTRODUCTION

The problem of detecting an underwater target in the pres-
ence of background noise and estimating parameters such as
range, depth, and bearing have been a point of research in the
last few decades [1]–[4]. One of the major noise sources is the
self-noise (interference) generated from the ship itself, which
makes it challenging to perform passive signal processing
onboard a moving ship to detect or locate a source. The
standard approach to mitigate the effects of any interfering
signal is to project the observed signal onto the subspace
orthogonal to that of the interfering signal.

Existing methods proposed in various studies mainly differ
in the computation of the noise subspace, which is estimated
from eigenvectors of the correlation matrix of either the
observed or interference signal [5]–[7]. If the correlation
matrix is computed from observations, the number of sampled
eigen directions corresponding to noisy subspace is often done
empirically. To address this issue, work in [4] proposed a
method based on eigenanalysis of cross-spectral density matrix
(CSDM) of the data followed by beamforming each of the
components. This helps identify the components with low
target-to-interference power for robust detection of the target
signal. When the energy of the interference signal is powerful
compared to the target, the only reliable way of detection
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is to compute the noisy subspace from an estimate of the
interference signal itself [7]. Nevertheless, any eigenanalysis-
based approach suffers from high computational complexity,
especially for high dimensional data from multiple sensors [8].

Further, in recent years, the sparse representation (SR)
based methods have proved to be successful in a variety of
underwater acoustic tasks such as direction-of-arrival (DOA)
estimation and source localization [9]–[11]. These methods
are based on the fact that it is relatively easy to find a sparse
representation for target data given a suitable overcomplete
basis (e.g., Fourier, wavelet) instead of noise (assumed to be
additive). Other works further exploit the sparsity of signals
to perform such tasks using very few random projections
based on the principles of compressed sensing (CS) [12],
[13]. For instance, work in [14], [15] proposed a compressive
beamformer for DOA estimation. However, the CS/SR-based
methods cannot simply be extended for self-noise cancellation
(SNC). First, the interference energy is much higher than the
target, and second, it exhibits similar sparsity properties. This
work proposes a novel method to combine the advantages of
a subspace-based noise cancellation approach with few CS
measurements.The advantage of the proposed method is that
it has reduced time and memory complexity compared to the
high-dimensional subspace-based methods.

The rest of the paper is organized as follows: Section II
describes array data model, The proposed compressive SNC
framework follows this in Section III. Finally, the experimental
results are detailed in Section IV, with a brief conclusion in
Section V.

II. ARRAY DATA MODEL

Consider N sensor elements are arranged on a Uniform Lin-
ear Array (ULA) [1]. The received array signal y[n] ∈ RT×1

at nth sensor is a combination of the target signal, self-noise,
and ambient noise as shown below :

y[n] = A(θ)s[n] + a(θ0)so[n] + v[n] (1)

A(θ) ∈ RT×J is the steering matrix for signal vector s[n] ∈
RJ×1 at angle of incident θ of signal vector on array, s0 is the
self-noise (generated by the mother ship) associated with the
steering vector a(θ0) ∈ RT×1, here θ0 is the self-noise bearing

978-1-6654-8348-3/22/$31.00 ©2022 IEEE

20
22

 S
en

so
r S

ig
na

l P
ro

ce
ss

in
g 

fo
r D

ef
en

ce
 C

on
fe

re
nc

e 
(S

SP
D

) |
 9

78
-1

-6
65

4-
83

48
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

SS
PD

54
13

1.
20

22
.9

89
62

23

Authorized licensed use limited to: Indraprastha Institute of Information Technology. Downloaded on May 09,2023 at 08:41:54 UTC from IEEE Xplore.  Restrictions apply. 



Z
Partitioned
in windows

Compressed
Undesired Signal

Z̄w = ΦZw

Eigenanalysis
/Orthogonalization

Compute
Null-Space

CS-Recovery
using Ψ

Concatenating
signals from all windowsBeamformerŝ
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Fig. 1. Compressed self-noise cancellation via null-space projection

angle and v[n] ∈ RT×1 represents the additive Gaussian noise.
Received noisy signal at ULA is

Y = [[y(1)] , [y(2)] , [y(3)], · · · [y(N)]] ∈ [T ×N ] (2)

For simplicity, we denote the signal model in matrix form as:

Y = S + Z (3)

where the goal is to recover/detect the signal component S
by removing undesired component Z due to the ambient and
self-noise.

III. PROPOSED METHOD: COMPRESSIVE SNC

The conventional approach for self-noise cancellation max-
imizes signal-to-interference noise ratio (SINR) by utilizing
the null space projection techniques. The optimal solution for
detecting the desired signal signature by eliminating interfer-
ence due to undesired signatures plus the noise is given as [6],
[16]:

Ŝ = PY; P = (I−UU†) (4)

where P is the projection matrix, and † denotes the pseudo-
inverse. U are selected sampled orthogonal columns of Z.
The crucial difference between existing approaches lies in the
computation of basis U which is estimated either from the
correlation matrix of the interference or the observation matrix.
In this work, we consider the former case (which is optimal
here) as the energy of the interference/undesired signatures is
powerful compared to the desired signature. From a numerical
point of view, U is mostly estimated by applying orthogonal
decomposition such as singular value decomposition (SVD)
or rank-revealing QR decomposition and is chosen to be
undercomplete as only the first few dominant directions (e.g.,
singular vectors) suffice to characterize the self-noise.

The inherently data-dependent nature of SVD/QR estima-
tion involving expensive eigendecomposition [6] often hinders
its use in severely resource-constrained settings such as un-
derwater acoustics [17]. To address this issue, we propose to
perform the null-space projection-based SNC in a compressed
domain by projecting observed sensor data onto a random
lower-dimensional subspace as highlighted in Fig.1. Here, we
not only use compressed measurements to recover/detect the
target signal but also perform the estimation of basis U for

noise cancellation. To this aim, we reexpress matrices Y and
Z as:

Y = [[y(1)] , [y(2)], . . . [y(T )]]T ,

Z = [[z(1)] , [z(2)], . . . [z(T )]]T
(5)

where y(m) and z(m) ∈ RN are mth row of Y and Z
respectively. Here [ . ]T represents transpose of a matrix.
Initially, We have partitioned Y and Z in ‘B’ number of
windows.

Yw(m) = [[y((m− 1)L+ 1)], · · · , [y((m− 1)L+ L)]]T ,

Zw(m) = [[z((m− 1)L+ 1)], · · · , [z((m− 1)L+ L)]]T

(6)
Subscript ‘w’ shows signal for one window. Here, m =
1, 2, ...B and T = BL. L is the length of a window, where
Yw ∈ RL×N and Zw ∈ RL×N . In compressed sensing
(CS), observations are measured using non-adaptive linear
measurements:

Ȳw = ΦYw = Φ(Sw + Zw) = Φ(ΨAw + Zw) (7)
Z̄w = ΦZw (8)

where Φ ∈ Rl×L(l << L) denotes the sensing matrix
consisting of ‘l’ random orthonormal random vectors. We
assume signal from each sensor exhibit a k-sparse represen-
tation (as columns of Aw) in a basis Ψ [12]. Study in [18]
showed that under the mild assumption of the eccentricity of
dominant eigenvalues, the eigenvectors of covariance matrix
ZT

wZw/L in original domain and Φ(ZT
wZw)ΦT/l are related.

By exploiting this property, the SNC procedure in (4) can be
performed in low-dimensional compressive space as:

S̄w = P̄wΦYw; P̄w = (I− ŪwŪ†w) (9)

where I is the identity matrix. P̄w and Ūw are the projection
and the orthogonal matrices respectively in the compressive
domain. The processed measurements S̄w can be considered
as an approximation of CS measurements of signal component
Sw. It has been shown that stable recovery of Sw in terms
of its sparse representation Aw is possible if Φ satisfies the
restricted isometry property (RIP) and is incoherent with basis
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Fig. 2. Beampattern for noisy and recovered NB stationary signal. Target bearing is at 120◦, and self-noise bearing is 15◦. (a,b,c) at SINR -20dB and (d,e,f)
at SINR -25dB using (a,d) top 10, (b,e) top 20 and (c,f) top 30 sampled orthogonal vectors (SOV), respectively. The compression ration l/L = .2 is used in
case of CSSVD and CSQR methods.

Ψ [12], [13]. The estimation of the signal matrix requires
solving N independent inverse-problems of the form:

argmin‖S̄w −ΦΨAw‖2F s.t. ‖ai‖0 ≤ k,
Aw = [a1 a2 a3 . . .]; Ŝw = ΨÂw

(10)

where ‖.‖0 denotes the `0-norm, ai are the columns of Aw,
and k denotes the cardinality of a vector. (10) is a non-
convex problem [19]–[21] and its solution can be obtained by
matching pursuit-based greedy algorithms or by relaxing the
sparsity constraints and using `1-norm based solvers instead
[12]. In this work, we employ discrete-time cosine transform
(DCT) as the sparsifying basis and random-ortho Gaussian
matrix as measurement matrix as it satisfies incoherence or
RIP conditions with high probability [13]. We denote the
two-step procedure in (9) and (10) as compressive self-noise
cancellation method. Finally, the complete recovered signal
can be obtained by concatenating recovered signal for all
windows:

Ŝ = [Ŝw(1), Ŝw(2), · · · Ŝw(n)]T (11)

This is followed by post-processing using a delay-and-sum
beamformer [8] to get beamformed output ŝ. Thus, the
proposed method reduces time complexity to O(L2N) as
compared to the high-dimensional subspace-based method
(O(l2N)).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

An experimental study is performed to evaluate the perfor-
mance of the proposed compressive SNC approach for target
detection in underwater acoustics. The simulation is done for
Narrowband (NB) and Broadband (BB) Signals, both with
stationary and moving targets in the presence of Gaussian am-
bient noise. Target and self-noise bearing are set to be 120◦ and
15◦, respectively, with moving target bearing varying at 1◦ per

second. The ULA contains 32 sensors that capture the signal
at a sampling rate of 12800 Hz over an observation time of the
40s. For signal recovery, we measure and process the signal
using non-overlapping rectangular windows of size 80ms. The
projection matrix P̄ is estimated from CS measurements using
SVD and QR decomposition, where we only sample a few top
consecutive orthogonal vectors to form basis Ū. To recover
the signal from projected CS samples Ȳ we employ greedy
sparse recovery algorithms. In particular, we experimented
with compressive sampling matching pursuit (CoSaMP) [22],
and orthogonal matching pursuit (OMP) [23] algorithms and
found OMP to be more robust in recovery both at low SNR
and less number of measurements. The recovered signal from
all sensors is beamformed using a delay-and-sum beamformer,
and the recovery performance is reported using: 1) plot of
normalized beam power as a function of steering angle; and
2) waterfall display (WD) of detected power signature as a
function of time and steering angle. We denote the plots/curves
corresponding to recovered signal after noise-cancellation in
the original domain as SVD or QR and in the compressed
domain as CSSVD or CSQR.

B. Results for Narrowband Signal

In this experiment, we consider the case where both target
and self-noise are narrowband with a single signal frequency
component of 1300 Hz and interference frequency of 1200 Hz.
Fig. 2 shows the beampattern corresponding to the recovered
target and the observed noisy signal at SINR of -20dB and
-25dB using top 10, 20 and 30 sampled orthogonal vectors
(SOV). Our baseline here is the SVD method, which can be
observed to have good noise-cancellation and target localiza-
tion with most of the power concentrated in the main lobe
centered at 120◦ (see Fig. 2(a)). The QR method also exhibits
comparable target recovery and localization. In contrast, both
CSSVD and CSQR methods have good target localization and
better noise-cancellation performance in terms of lower power
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Fig. 3. Waterfall display for noisy and recovered [NB/BB] stationary and moving target at SINR -20 dB using top 20 sampled orthogonal vectors.

in side lobes. Note that the main lobe power in the case of
CSSVD/CSQR is slightly less than SVD/QR methods and is
a function of the compression ratio l/L (see Section IV-D
for more details). We have also analyzed the impact of a
number of SOV of Ū to form a projection matrix P̄. While the
target localization is comparable, one can observe that as we
sample more vectors, the uniformly distributed side lobe power
becomes more concentrated at certain steering angles. These
results are consistent for different SINR and both stationary
and moving targets. We further evaluate the Self Noise - Power
Level Reduction (SN-PLR) and Target Power Loss (TPL). It
is the absolute difference in power output (in dB) between the
recovered and noisy signals at self-noise and target bearing,
respectively. The SN-PLR (TPL) scores at SINR-20 dB and -
25 dB are illustrated in Table I and II respectively at l/L = .2.
Although the CSSVD/CSQR show higher TPL, the target is
still being localized with respectable suppression in self-noise
(higher SN-PLR compared to SVD/QR). To demonstrate the
bearing history of the recovered target at a specific time,
we show the WD plots in Fig. 3(a) and (b). In particular,
we only show WD plots for moving targets to visualize the
temporal behavior better. Observe maximum power at 120◦

for stationary target and how the signature is localized from
120◦ to 180◦ throughout the 40s in WD plots. We see that
CSSVD and CSQR methods can recover, localize, and track
the target while simultaneously suppressing the ambient and
self-noise even for moving targets.

C. Results for Broadband Signal

This experiment considers a more complex broadband case
with the frequency range for both target and interference being

TABLE I
SN-PLR (TPL) FOR NB STATIONARY TARGET AT SINR -20 DB

SOV SVD QR CSSVD CSQR
10 37.12 (0.28) 34.95 (0.27) 41.23 (1.99) 39.31 (1.95)
20 39.02 (0.61) 37.42 (0.59) 43.38 (2.50) 41.85 (2.44)
30 40.81 (0.93) 40.35 (0.93) 45.06 (2.99) 44.86 (2.99)

TABLE II
SN-PLR (TPL) FOR NB STATIONARY TARGET AT SINR -25 DB

SOV SVD QR CSSVD CSQR
10 37.69 (5.10) 35.26 (5.05) 42.38 (7.68) 40.07 (7.52)
20 40.58 (5.53) 38.40 (5.48) 45.76 (7.69) 43.35 (7.71)
30 44.91 (5.94) 43.77 (5.92) 49.49 (8.16) 48.77 (8.09)

100Hz-2000Hz. Due to space constraints, we only report the
results using the WD plot in Fig. 3(c) and (d). For stationary
targets, it can be observed that both SVD and CSSVD methods
have comparable performance in terms of noise cancellation
and target localization. However, the QR method is unable to
recover the target, which demonstrates that the choice of the
orthogonal subspace is crucial. Here the sample vectors do
not seem to correspond to self-noise leading to undesirable
results. Interestingly, the CSQR method can still locate the
target, and although self-noise is not fully canceled, it is
distributed along with other bearing angles. We observe similar
trends for the case of moving target where the SVD method
performs the best, followed by CSSVD, CSQR, and QR
methods, respectively. These results demonstrate the advantage
of exploiting the sparsity to achieve SNC in the compressive
domain.
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D. Impact of compression ratio

In this experiment, we assess the recovery performance
of the proposed compressive SNC method as a function
of compression ratio (l/L). This is important to understand
the trade-off between computational complexity using fewer
CS samples vs. the target recovery/localization performance.
In particular, we consider the case of NB stationary target
where the SNC is performed using the CSSVD method at
compression ratio of 0.2, 0.1, 0.05, respectively. Fig. 4 shows
the beampattern corresponding to the observed noisy signal
at SINR of -20dB and the recovered target using top 20
orthogonal vectors. It can be inferred that even with very few
measurements, especially l/L =.05, the proposed method is
able to localize the target. However, the ability to resolve the
main lobe at 120◦ from the other side lobe improves as the
ratio l/L increases.

V. CONCLUSION

We have presented a CS-based approach for self-noise
cancellation and target localization in this work. Consistent
with existing studies, we demonstrate the efficacy of the
CS approach in exploiting the sparsity of the target for a
robust recovery in the case of both narrowband and broadband
signals. The novelty of our approach lies in the combination of
the subspace-based noise-cancellation approach with CS-based
target localization in the presence of self and ambient noise.
Self-noise typically has much higher power than target and
also exhibits sparse properties. Hence, we first employ null-
space projection in the compressive domain to suppress noise
followed by conventional CS-based target recovery. Finally,
we experimentally demonstrated that working with various
orthogonal decomposition methods to estimate noisy subspace
in the compressed domain is more robust than working directly
in the original high-dimensional signal domain. Our future
work will focus on optimizing the sensing matrix for multiple
target localization.
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