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Abstract— In this paper, a novel proportional integral (PI)-like
estimator-based adaptive extremum seeking control (AdESC)
algorithm is proposed for online optimization, where parameter
convergence is achieved under a relaxed mathematical condition
called initial excitation (IE). The proposed AdESC algorithm
utilizes a new set of low-pass filter dynamics, which omits the
requirement of switching mechanism in past literature for rank-
checking while still ensuring parameter convergence. A detailed
Lyapunov analysis is carried out using singular-perturbation
like principle to establish closed-loop stability of the AdESC
algorithm.

I. INTRODUCTION

Extremum seeking control (ESC) has evolved as a promising
feedback-based methodology, which tackles the problem of
online optimization of an unknown objective/cost function
with verifiable stability and robustness properties. The first
detailed stability analysis of ESC were reported in [1], [2],
using averaging and singular perturbation theory for ordinary
differential equations. Furthermore, few other results on local
stability of perturbation-based ESC scheme has been reported
in [3], [4]. Extremum seeking has found applications in a
wide variety of problems, including biochemical reactors [5],
gas-turbine combustors [6], power electronics [7], etc.
Besides these applications, ESC algorithms have great poten-
tial in robot-based source seeking problems; especially for
robots that operate in unknown/dynamic environments (i.e.,
homes, offices, elderly care centers). In such cases, ESC can
be utilized to optimize some task variables of interest in real-
time [8]–[10].
Adaptive ESC is an extension of ESC, where the optimizer
simultaneously estimates the unknown cost and endeavors to
locate the extremum-based on real-time sensing. Unbiased
parameter estimation in steady state is a crucial demand
in adaptive ESC (AdESC) since convergence to extremum
directly relies on the estimation accuracy. Parameter con-
vergence in AdESC using persistence of excitation (PE)
condition is discussed in several works [5], [11], whereas
a relaxed PE condition-based set-point problem is presented
in [12]. Hybrid ES architectures that combine continuous-
time and discrete-time dynamics, requiring a PE condition,
is also presented in [13]. This PE condition is also vital many
other control problems like model reference adaptive control
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[14], [15], adaptive optimal control [16], etc. However, the
condition is stringent in nature due to its lack of practical
feasibility. The condition relies on the future behavior of
the signal, making it difficult to verify online. Persistent
perturbations are often injected to the controller for suf-
ficient exploration to satisfy the PE condition. While this
exploration technique may improve estimation efficiency, it
hampers the actual control objective in many settings [14].
Recently, a new technique called concurrent learning (CL) is
reported in [17], [18], which claims that the classical PE con-
dition can be relaxed using “sufficiently rich” recorded data.
Along the similar lines, some recent works [19]–[22] have
proposed two-tier filter-based adaptive controllers to ensure
parameter convergence using an online-verifiable condition
of initial excitation (IE). The IE condition is shown to be
effectively milder than the PE condition since it demands
sufficient information content only in an initial time window
(transient period), unlike PE. Second-layer filter architecture
in IE-based framework has two different versions open-loop
[19], [23] and closed-loop [20], [22], respectively. While CL
as well as closed-loop version of IE uses a computationally
burdensome rank condition for switched adaptation, open-
loop version of IE framework lacks internal stability and
robustness to external disturbance.

In this paper, a novel proportional integral (PI)-like
estimator-based AdESC algorithm is proposed for online
optimization, where parameter convergence is achieved under
the relaxed excitation condition called initial excitation (IE).
Unlike previous IE-based results, a novel weighting function-
based filter is introduced here. The newly introduced filter
dynamics does not have instability issue as well as online
rank-checking requirement (IE verification), which were the
major concerns in open-loop and closed-loop filter architec-
tures of IE-based designs [19], [22], respectively. A rigorous
stability analysis with a novel choice of Lyapunov function
candidate is performed using singular perturbation theory,
which ensures global exponential convergence of the con-
catenated error dynamics to the equilibrium point. Simulation
results further validate the efficacy of the proposed filter
based novel AdESC algorithm.

II. PROBLEM FORMULATION

A. Model Description

Consider an autonomous agent with single-integrator dynam-
ics ∀t ≥ t0

ẋ(t) = u(t), (1)
y(t) = J(x(t)) (2)
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where x(t)∈Rn denotes position, u(t)∈Rn denotes velocity
control input, y(t) ∈ R denotes output/sensory performance
described by a performance index/cost function J : Rn→ R,
which is an unknown continuously differentiable function
defined on an open set containing a closed set M ⊂ Rn of
interest. It is assumed that the agent can only access the
performance index J(x) at its own coordinate.

The following assumptions on the unknown performance
index J(x) are considered to facilitate the subsequent de-
velopment.

Assumption 1. The performance index J(x) can be linearly
parametrized i.e., ∃ an unknown constant parameter vector
θ ∈ Rp and a known continuously differentiable regressor
function φ(x(t))∈Rp (plausibly non-linear with the property
that (x(t) ∈L∞ =⇒ φ(x(t)) ∈L∞) such that

J(x(t)), θ
T

φ(x(t)) (3)

Assumption 2. Performance index J(x) is strongly convex
with modulus µ > 0 and continuously differentiable on an
open set D⊃ M̄⊃M, and the set M and M̄ are compact, con-
vex, and nonempty sets to be defined subsequently. Moreover,
∇J(x) is Lipschitz on D with Lipschitz constant L > 0.

B. Objectives

The objective of this work is to develop a filter-based
AdESC algorithm i.e., a pair of control input u(t), parameter
estimator θ̂(t) are to be designed such that the following
arguments hold:

1) ‖x(t)− x?‖→ 0 as t→ ∞, ∀t ≥ t0
with
x? = argmin J(x), subject to x(t0) ∈M (4)

2) ‖θ̂(t)−θ‖→ 0 as t→ ∞, ∀t ≥ t0 (5)

where θ̂(t) ∈ Rp denote the estimate of unknown constant
vector θ .

In general, classical AdESC [5], [12], [24] and data-enabled
(ESC) [25], [26] algorithms require the restrictive PE condi-
tion and an online-verifiable computationally-expensive rank
condition on the stored data for parameter convergence,
respectively. However, to obviate such issues, this work relies
on online measurements while capturing past information via
novel integral action.

III. FILTER-BASED PI-LIKE ADESC ALGORITHM DESIGN

A. Integral Filter Architecture

To design a novel filter-based PI-like parameter estimation
algorithm, the following low-pass filter equations are intro-
duced, ∀t ≥ t0.

Ẏ (x(t)) = α(t)φ(x(t))φ T(x(t)), Y (x(t0)) = 0 (6)

Ż(x(t)) = α(t)φ(x(t))JT(x(t)), Z(x(t0)) = 0 (7)

where Y (x(t)) ∈ Rp×p denotes the filtered regressor,
Z(x(t)) ∈ Rp denotes the filtered output, and α(t) ∈ R is

strategically introduced as a weighting function, which has
the following properties:

α(t)> 0, ∀t ∈ [t0,∞) (8)
α(t)< ᾱ < ∞, ∀t ∈ [t0,∞), α(t) ∈L∞ (9)
α(t) ∈L1 (10)

where ᾱ ∈ R>0 is the upper-bound of α(t).
Remark 1. Novelty of the filter dynamics (6)-(7) relies on
the weighting function α(t) ∈ R, which satisfies the above
properties (8)-(10). This facilitates the boundedness property
of Y (x(t)) and Z(x(t)) as revealed later in the stability
analysis section.
Analytically solving the (6), (7), along with (3), it can be
deduced that

Z(x(t)), Y (x(t))θ , ∀t ≥ t0 (11)

The following properties of the filtered regressor Y (x(t)) are
crucial for the subsequent development.
Property 1. Y (x(t)) is a positive semi-definite function of
time i.e., Y (x(t))≥ 0, ∀t ≥ t0.

Proof: From (6), the square matrix Y (x(t)) can be
represented as

Y (x(t)) =
∫ T

t0
α(r)︸︷︷︸
>0

φ(x(r))φ T(x(r))︸ ︷︷ ︸
≥0

dr (12)

Utilizing (8), in (12), it can be deduced that Y (x(t)) ≥ 0,
∀t ≥ t0. �

Property 2. Y (x(t)) is a non-decreasing function of time
in the sense of matrix inequality i.e., Y (x(t2)) ≥ Y (x(t1)),
∀t2 ≥ t1 ≥ t0

Proof: From (6), the square matrix Y (x(t)) can also be
expressed as

Y (x(t2)) = Y (x(t1))+
∫ t2

t1
α(r)φ(x(r))φ T(x(r))dr︸ ︷︷ ︸

≥0

(13)

From (13), utilizing the Property 1, it can be concluded that
Y (x(t2))≥ Y (x(t1)), ∀t2 ≥ t1 ≥ t0. �

To capture past information via integral action, The following
Assumption on regressor function φ(x(t)) is considered,
which needs to be satisfied by the trajectory x(t).
Assumption 3. The regressor function φ(x(t)) ∈ Rp is
uniformly initially exciting (u-IE) w.r.t the dynamics (1), i.e.,
∃ ϒ,T > 0, such that, ∀(t0,x0)∈R≥0×Rn, all corresponding
solutions satisfy

t0+T∫
t0

φ
(
x(r, t0,x0)

)
φ

T(x(r, t0,x0)
)
dr ≥ ϒIp (14)

Remark 2. The IE condition (defined in [19]–[22]) requires
the excitation/richness only in the initial finite time window,
which is significantly less restrictive than the PE condition,
where the excitation is needed for the entire time span [27],
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[28]. It is argued in [20] that the notion of persistence is en-
tirely abolished owing to the richness requirement merely in
the initial time-window, i.e., the excitation need not sustain as
the window is moved forward in time. It is observed in [19]–
[22] that a frequency-rich transient perturbation facilitates
the IE condition without drastically affecting tracking perfor-
mance, unlike PE, which requires frequency-rich persistent
perturbation, hampering tracking performance. Since the IE-
based adaptive controllers establish exponential convergence
(a stronger notion of convergence), they in turn provide
superior transient tracking performance (heuristically) in
contrast to classical adaptive controllers as verified through
extensive simulation studies in [19]–[22]. This work exploits
the benefit of IE condition for AdESC with the use of a novel
filtering mechanism (6)-(7).

Lemma 1. Provided Assumption 3 holds, Y (x(t)) ∈Rp×p is
positive definite, ∀t ≥ t0 +T .

Proof: Utilizing the property (9) of weighting function
α(t), and (12), the filtered-regressor can be lower-bound as

Y (x(t0 +T ))≥ α

∫ t0+T

t0
φ(x(r))φ T(x(r))dr, (15)

where α > 0 is the lower-bound of α(t), ∀t ∈ [t0, t0 +T ].

From (15), utilizing Assumption 3, it can be deduced that

Y (x(t))≥ αϒIp, ∀t ≥ t0 +T. (16)

From (16), it can be concluded that Y (x(t)) ∈ Rp×p is
positive definite, ∀t ≥ t0 +T . �

In order to satisfy the objectives (4)-(5), consider an AdESC
algorithm characterized by the following parameter estimator
and controller duo.

B. Proposed PI-like Parameter Estimator

Consider the novel PI-like parameter estimation law

˙̂
θ(t) =Fθ (θ̂ ,x)

=− γΓθ φ(x(t))
(
Ĵ(x(t))− J(x(t))

)T︸ ︷︷ ︸
Tp f

− γ1Γθ

(
Ẑ(x(t))−Z(x(t))

)︸ ︷︷ ︸
Ti f

, ∀t ≥ t0 (17)

with

Ĵ(x(t)), θ̂
T(t)φ(x(t)), Ẑ(x(t)), Y (x(t))θ̂(t)

where Γθ ∈Rp×p is a positive definite learning gain matrix, γ

and γ1 are positive tuning parameters. The proposed PI-like
parameter estimator dynamics in (17) consists of the term
Tp f , which is proportional-type prediction-error; and Ti f is
the newly introduced integral-type prediction-error.

C. Proposed Controller

Consider the following controller

u(t) = ε

[
−x+PM

(
x−ηθ̂

T
∇φ
(
x(t)
)]

+uex(t), ∀t ≥ t0 (18)

where ε ∈ R>0 is a controller tuning parameter; projection
operator is defined as PM(x) = argminu∈M ‖x − u‖2, and
uex(t) is an exponentially decaying probing signal having the
following properties that, uex(t)∈L∞ and uex(t)→ 0 as t→
∞. η ∈R>0 is a design parameter. The purpose of embedding
such probing signal uex(t) is to provide sufficient excitation
to achieve parameter convergence [5], [12], [29], which helps
the algorithm to get unknown minimum x?, θ of the objective
(4) and (5), respectively. However, the notion of decaying
exploration is unique in the proposed work as compared
to past literature on ESC, where persistent exploration is
considered to satisfy the PE condition.

Utilizing (18) in (1), the agent dynamics in closed-loop form
can be expressed as

ẋ(t) = εFx(x, θ̂)+uex(t)

= ε

[
− x+PM

(
x−ηθ̂

T
∇φ
(
x(t)
)]

+uex(t), ∀t ≥ t0
(19)

D. Closed-loop Stability Analysis

Due to the coupled nature of the estimator and the controller,
the analysis demands to use singular perturbation theory
[30]-like method, where estimator dynamics (17) should have
a faster time-scale than the dynamics (19)1. The two-time
scale analysis is presented below.

By introducing θ̃(t) := θ̂(t)− θ , x̃(t) := x(t)− x?, where
(θ ,x?) is the equilibrium point of the pair

(
(17),(19)

)
and

expressing the closed-loop equations in θ̃ , x̃ coordinates and
in the new time scale τ = εt, the model of the closed-loop
system is obtained in the standard singular perturbation form
as ∀t ≥ t0

ε
dθ̃

dτ
= Fθ (θ̃ +θ , x̃+ x?) (20)

dx̃
dτ

= Fx(x̃+ x?, θ̃ +θ)+
1
ε

uex(
τ

ε
) (21)

where (20) and (21) denote as boundary layer/fast dynamics
and slow dynamics, respectively.

The following Theorem provides stability guarantees for the
parameter estimation algorithm with fast dynamics (20).

Theorem 2. The boundary layer (fast) dynamics

˙̃
θ = Fθ (θ̃(t)+θ , x̃(t)+ x?) (22)

satisfies the following properties.

1) Stability/Convergence: The origin (θ̃ = 0) of the
boundary layer (fast) dynamics is Lyapunov stable and
all the auxiliary signals remain bounded for all time.

1Throughout the paper, it is assumed that all the functions are sufficiently
smooth so that appropriate singular perturbation theory can be used.
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2) Prediction-error convergence:

Tp f (t),
(

Ĵ(x(t))− J(x(t))
)
→ 0 as t→ ∞

Ti f (t),
(

Ẑ(x(t))−Z(x(t))
)
→ 0 as t→ ∞.

3) Parameter convergence under u-IE: Provided the result
of Lemma 1, then the origin of the boundary layer
dynamics θ̃(t) is uniformly globally exponential stable
(UGES) in a delayed sense i.e.,

‖θ̃(t)‖ ≤ δ1‖θ̃(t0+T )‖e−δ2(t−t0−T ), ∀t ≥ t0+T (23)

where δ1,δ2 ∈ R>0.

Proof: Consider the following Lyapunov candidate for
the boundary layer (fast) dynamics

V1(θ̃(t)) =
1
2

θ̃
T

Γ
−1
θ

θ̃ . (24)

Taking the time derivative of (24) along (22), yields

V̇1 =−θ̃
T(

γφφ
T + γ1Y

)
θ̃ ≤ 0. (25)

Using the Property 1 in (25), the above inequality implies
Lyapunov stability of the error dynamics θ̃(t). Utilizing the
result of Lemma 1 which is based on Assumption 3, V̇1 in
(25) can be further upper bounded as

V̇1 ≤−αϒγ1‖θ̃(t)‖2 ≤ 0, ∀t ≥ t0 +T (26)

and after using (24), the inequality (26) can be written as,

V̇1 ≤−2αϒγ1V1, ∀t ≥ t0 +T. (27)

Hence using the comparison Lemma of [30], the differential
inequality in (27) leads to the subsequent exponentially
convergent bound on V1:

V1(t)≤V1(t0 +T )e−2αϒγ1(t−t0−T ), ∀t ≥ t0 +T. (28)

From (24), one has ‖θ̃(t)‖ =
√

2V1(t), which implies that
‖θ̃(t)‖ is exponentially convergent to zero for t ≥ t0+T , i.e.,
(23) holds true. Since V1(t) in (24) is radially unbounded,
the result holds globally. �

Theorem 3. Provided that Assumption 2 holds, neglecting
the effect of exponential decaying perturbation signal i.e.,
uex(t) = 0, the origin (x̃≡ 0) of the slow dynamics ∀t ≥ t0

dx̃
dτ

= Fx(x̃+ x?, θ) (29)

is uniformly globally exponentially stable.
Proof: This follows the proof argument of Theorems

3-4 in [31], [32]. �

Remark 3. Based on [31], [32], Theorem 3 implies that, for
each x(t0) ∈M, there exist a unique solution x(t) ∈M, ∀t ≥
t0. However, (19) with uex(t)= 0, also implies same argument
i.e., x(t) ∈M, ∀t ≥ t0, followed from [31], [32] along with
[25]. In the same line, due to the presence of exploratory
signal uex(t) in (19), it can be insured that for each x(t0) ∈
M, there exist a unique solution x(t) ∈ M̄, ∀t ≥ t0 where
M ⊆ M̄ ⊂D, and the increase in diameter of M̄ as compared
to M is depend on the size of exploratory signal uex(t).

Above individual results on fast and slow dynamics dictate
that Tikhonov’s Theorem (Theorem 11.3 [30])-like argu-
ments can be invoked for proving asymptotic stability of
the equilibrium point of the coupled dynamics, comprising
parameter estimator dynamics (17) and agent dynamics (19).
In accordance with the above, stability property of the cou-
pled system is stated in the subsequent theorem additionally
revealing the condition for exponential convergence, while
including the effect of exploratory signal on the closed-loop
dynamics.
Theorem 4. IF Assumptions 1-3 hold, the filter-based PI-like
AdESC algorithm exhibit the following properties.

1) For the parameter estimator dynamics (17), θ̂(t) con-
verges to the unknown constant θ exponentially (ob-
jective (5) is achieved);

2) The dynamics (19) with x(t0) ∈ M converge to the
unique solution x? exponentially (optimization objec-
tive (4) is achieved);

provided that the following gain conditions are satisfied:
0 < ε < µ

η2(L2+1) , αϒγ1 >
1−d

d C2.
Proof: Consider the following composite Lyapunov

candidate

V = d
(1

2
θ̃

T
Γ
−1
θ

θ̃

)
︸ ︷︷ ︸

V1

+(1−d)
(

J(x)− J(x?)+
1
2
‖x− x?‖2

)
︸ ︷︷ ︸

V2
(30)

where d ∈ (0,1).
Taking the time derivative of (30) along with the (17) and
(19), yields

V̇ ≤−dαϒγ1‖θ̃‖2− (1−d)
(
∇J(x)+(x− x?)

)T
ε

(
(x− x̄)

−PM
(
x−ηθ̂

T
∇φ
)
+PM

(
x−ηθ

T
∇φ
))

+(1−d)
(
∇J(x)+(x− x?)

)Tuex(t), ∀t ≥ t0 +T (31)

where x̄ := PM
(
x−ηθ T∇φ

)
. Within a compact set (M̄) there

exist C > 0 such that ‖∇φ‖≤C. Further using the proof argu-
ment of Lemma 4 from [31], due to the Lipschitz continuity
of projection dynamics, rendering non-expansive property
‖PM(x)−PM(y)‖ ≤ ‖x− y‖,∀x,y, the above inequality (31)
can be modified as

V̇ ≤−dαϒγ1‖θ̃‖2− (1−d)ε‖x− x̃‖2

− (1−d)ε(x− x?)T
∇J(x)

+(1−d)εη‖∇J(x)‖C‖θ̃‖+(1−d)εη‖x− x?‖C‖θ̃‖
+(1−d)

(
‖∇J(x)‖+‖(x− x?)‖

)
‖uex(t)‖, ∀t ≥ t0 +T.

(32)

Provided Assumption 2 holds and utilizing the Cauchy-
Schwarz inequality on the cross term, the above inequality
(32) can be modified, ∀t ≥ t0 +T

V̇ ≤−dαϒγ1‖θ̃‖2− (1−d)ε
[
J(x)− J(x?)+

µ

2
‖x− x?‖2

]
+(1−d)C2‖θ̃‖2 +(1−d)

ε2η2

2
(L2 +1)‖x− x?‖2

+(1−d)(β1 +β2)‖uex(t)‖, ∀t ≥ t0 +T (33)
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where µ > 0 and β1,β2 ≥ 0 are the upper bounds on
‖∇J(x)‖,‖x− x∗‖, respectively, ∀x ∈ M̄. After some manip-
ulation on (33), ∀t ≥ t0 +T , yields

V̇ ≤−
(

dαϒγ1− (1−d)C2
)
‖θ̃‖2− (1−d)ε

(
J(x)− J(x?)

)
− (1−d)

(
ε

µ

2
− (L2 +1)

2
ε

2
η

2
)
‖x− x?‖2 +β3e−β4t .

(34)

Further, (34) can be modified as

V̇ ≤−min
(

2
(
αϒγ1−

(1−d)
d

C2),(εµ− (L2 +1)(ε2
η

2)
)
,ε
)

︸ ︷︷ ︸
β5>0

V

+β3e−β4t (35)

where, the following necessary and sufficient conditions
should be satisfied - 0 < ε < µ

η2(L2+1) , αϒγ1 >
1−d

d C2; and
β3,β4 are some computable positive scalars. Further using
the comparison lemma (see [30], Lemma 3.4), V (t) can be
upper bounded as,

V (t)≤ δ1e−δ2t , ∀t ≥ t0 +T (36)

where δ2 = min(β5,β4) and δ1 are computable positive
scalars. Thus, V (t) is exponentially converging to zero. �

E. Boundedness of the Auxiliary Signals

Corollary 4.1. Suppose that the results of Theorem 4 hold,
then Y (x(t)), Z(x(t)) ∈L∞.

Proof: From Theorem 4, it can be inferred that
x(t) ∈ L∞ which implies φ(x(t)) ∈ L∞ from Assumption
1. Utilizing the above facts, properties (8)-(10) of weighting
function α(t) in (12), ‖Y (x(t))‖ can be expressed as

‖Y (x(t))‖= ‖
∫ t

t0
α(r)︸︷︷︸
>0

φ(x(r))φ T(x(r))︸ ︷︷ ︸
≥0

dr‖

≤
∫ t

t0
‖α(r)‖‖φ(x(r))φ T(x(r))‖dr

≤ ‖φ(x(t))φ T(x(t))‖max

∫ t

t0
‖α(r)‖dr (37)

which implies Y (x(t)) ∈L∞ since α(t) ∈L1 by definition.
Based on algebraic relation Z(x(t)),Y (x(t))θ in (11), it can
be inferred that Z(x(t)) ∈L∞. �
Remark 4. In the proposed integral filter architecture (6-
7) with the special properties of weighting function α(t), it
can be observed that there is no unlearning of information
since there is no forgetting factor involved unlike closed-loop
filter architecture, requiring a computationally expensive
switching mechanism for the update law through online IE
verification [20], [22]. On the other hand, the introduction of
weighting function α(t) also resolves the internal instability
issue of open-loop filter architecture [20], [33], [34].
Remark 5. Note that a more realistic situation regarding
Assumption 2 can be considered i.e., if the performance
index J(x) is convex instead of strongly convex, while rest
remaining same. Under this condition, it can be shown
that objectives (4)-(5) are achieved asymptotically instead
of exponentially.

IV. SIMULATION RESULTS

The proposed AdESC algorithm is simulated using the fol-
lowing performance index or objective function J(x) = (x1−
2)2 +(x2−2)2. Based on Assumption 1, the unknown con-
stant parameter vector is θ = [1,1,0,−4,−4,8]∈R6 and the
regressor matrix is φ(x(t)) = [x2

1,x
2
2,x1x2,x1,x2,1] ∈R6; The

filter weighting function α(t) = exp−0.2(t−t0) is chosen such
that it satisfies all the properties (8)-(10); the exploratory
signal is selected as uex(t) = 0.25exp−0.2(t−t0)[1,sin(3t)]T,
which is a decaying signal, i.e., it helps to explore in the
transient phase, while facilitates exploitation in the long term
by diminishing itself. The control tuning parameter is chosen
as ε = 0.022,η = 1. Figures 1-4 validate the claims of Theo-
rem 4 i.e., trajectory x(t) converges exponentially to the exact
unknown minima x∗ = [2,2]T and estimation error θ̃(t) ex-
ponentially converges to zero. In this scenario, the proposed
IE-based AdESC algorithm outperforms the conventional
PE-based AdESC algorithm ˙̂

θ(t) = −γΓθ φ(x(t))
(
Ĵ(x(t))−

J(x(t))
)T. In fact, it is evident from Figure 4 that the PE-

based algorithm is moving in an opposite direction in the
absence of PE condition (due to exponentially decaying
exploratory signal), while the proposed IE-based algorithm
is converging to the minima (2,2).
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Fig. 1: The evolution of the state x(t) and a comparison with
different techniques.
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Fig. 2: The evolution of the norm of the parameter estimation
error and a comparison with different techniques.

V. CONCLUSION AND FUTURE WORK

This paper designs a novel PI-like AdESC algorithm for
online optimization. Unlike past literature in adaptive ESC
and data-driven adaptive ESC algorithms, where parameter
convergence is ensured by restrictive conditions like the
PE condition and rank condition on past stored data, the
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Fig. 3: The evolution of the performance index J(x(t)) and
a comparison with different techniques.
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Fig. 4: The evolution of the trajectories in a phase plane plot
to show the achievement of the optimization objective.

proposed AdESC algorithm ensures parameter convergence
under a relaxed mathematical condition called Initial Ex-
citation (IE). The novelty of the proposed PI-like AdESC
algorithm relies on a newly introduced weighted integrator
which omits the requirement of switching mechanism for
rank-checking as well as internal instability issue unlike
previous works on IE frameworks. Future work will focus
on extending the formulation to multi-agent systems.
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erately unstable systems and for autonomous vehicle target tracking
without position measurements,” Automatica, vol. 43, no. 10, pp.
1832–1839, 2007.

[11] M. Guay, I. Vandermeulen, S. Dougherty, and P. J. Mclellan, “Dis-
tributed extremum-seeking control over networks of dynamic agents,”
in 2015 American Control Conference (ACC). IEEE, 2015, pp. 159–
164.

[12] V. Adetola and M. Guay, “Parameter convergence in adaptive
extremum-seeking control,” Automatica, vol. 43, no. 1, pp. 105–110,
2007.

[13] J. I. Poveda, K. G. Vamvoudakis, and M. Benosman, “A neuro-adaptive
architecture for extremum seeking control using hybrid learning dy-
namics,” in 2017 American Control Conference (ACC). IEEE, 2017,
pp. 542–547.

[14] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems.
Courier Corporation, 2012.

[15] E. Lavretsky, “Combined/composite model reference adaptive control,”
IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2692–
2697, 2009.

[16] R. R. Bitmead, M. Gevers, and V. Wertz, “Adaptive optimal control
the thinking man’s gpc,” 1990.

[17] G. Chowdhary and E. Johnson, “Concurrent learning for convergence
in adaptive control without persistency of excitation,” in 49th IEEE
Conference on Decision and Control (CDC). IEEE, 2010, pp. 3674–
3679.

[18] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Con-
current learning adaptive control of linear systems with exponentially
convergent bounds,” International Journal of Adaptive Control and
Signal Processing, vol. 27, no. 4, pp. 280–301, 2013.

[19] S. B. Roy, S. Bhasin, and I. N. Kar, “Parameter convergence via a
novel pi-like composite adaptive controller for uncertain euler-lagrange
systems,” in 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 1261–1266.

[20] ——, “A uges switched mrac architecture using initial excitation,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 7044–7051, 2017.

[21] S. B. Roy and S. Bhasin, “Robustness analysis of initial excitation
based adaptive control,” in 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 7055–7062.

[22] S. Basu Roy and S. Bhasin, “Novel model reference adaptive control
architecture using semi-initial excitation-based switched parameter
estimator,” International Journal of Adaptive Control and Signal
Processing, vol. 33, no. 12, pp. 1759–1774, 2019.

[23] S. B. Roy, S. Bhasin, and I. N. Kar, “Combined mrac for unknown
mimo lti systems with parameter convergence,” IEEE Transactions on
Automatic Control, vol. 63, no. 1, pp. 283–290, 2017.
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