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Abstract

Although complex-valued convolutional neural networks
(iCNNs) have existed for a while, they lack proper complex-
valued image inputs and loss functions. In addition, all
their operations are not complex-valued as they have both
complex-valued convolutional layers and real-valued fully-
connected layers. As a result, they lack an end-to-end
flow of complex-valued information, making them incon-
sistent w.r.t. the claimed operating domain, i.e., com-
plex numbers. Considering these inconsistencies, we pro-
pose a complex-valued color model and loss function
and turn fully-connected layers into convolutional lay-
ers. All these contributions culminate in what we call
FCCNs (Fully Complex-valued Convolutional Networks),
which take complex-valued images as inputs, perform only
complex-valued operations, and have a complex-valued
loss function. Thus, our proposed FCCNs have an end-
to-end flow of complex-valued information, which lacks in
existing iCNNs. Our extensive experiments on five image
classification benchmark datasets show that FCCNs consis-
tently perform better than existing iCNNs. Code is available
at https://github.com/saurabhya/FCCNs.

1. Introduction

In the ever-evolving deep learning era, complex-valued
neural networks (iCNNs) show great promise, given their
ability to learn complex-valued representations. Neverthe-
less, iCNNs have some inconsistencies which should be ad-
dressed: (i) Input images are real-valued. (ii) They are not
fully complex-valued. (iii) They have real-valued losses.
Because of these inconsistencies, we don’t witness an end-
to-end flow of complex-valued information in these net-
works. As a result, it’s difficult to declare them as truly
complex-valued. This paper aims to weed out these incon-
sistencies and uncover their true potential in computer vi-
sion research.

Figure 1. We introduce Fully Complex-valued Convolutional Net-
works (FCCNs), which leverage (i) complex-valued color in-
puts using our novel iHSV color model, (ii) complex-valued 1x1
convolutions to turn even fully-connected layers into convolu-
tional layers, and (iii) our novel complex-valued loss function
to tackle the deficit between |y|ei0 (complex-valued labels) and
|z|eiθ (complex-valued outputs). Hence, FCCNs operate entirely
in complex-domain.

However, several challenges are involved: (i) No
complex-valued color model is readily available to allow
us to have real and imaginary components of an image, as
shown in Fig. 1. (ii) No prior study exists on how fully-
connected layers can be made complex-valued to have an
end-to-end flow of complex-valued information. (iii) There
are no well-tested complex-valued loss functions for deep
learning approaches.

Despite these challenges, what motivates us to explore
complex-valued representation for color images is the sheer
potential complex-valued networks have shown in other
domains such as MRI [7, 40], radar signals [10, 11] and
audio signals [12, 16], where complex-valued inputs are
readily available. As per the recent studies conducted in
[1, 8, 19, 27], iCNNs have performed better than their real-
valued counterparts. Moreover, they are biologically moti-



vated [31] and possess greater generalization capacity [15],
which inspires us to explore HSV color space for such in-
puts since it aligns with how human vision perceives color-
making attributes.

In the past, in [37], authors have tried image classifica-
tion using iCNNs inputting RGB as the real part and learned
features from RGB as the imaginary part of an image. How-
ever, we argue that components of complex numbers are
supposed to be orthogonal, which means they are mutually
independent. So, it should not be possible to derive one part
from another. In [34], authors look for orthogonality and
propose to use {L∗ + i0, a+ ib} and {R+ iG,G+ iB} as
possible complex-valued inputs. Note that these are more
like complex-valued encodings than a complex-valued rep-
resentation of an image. That is because we cannot decom-
pose an image based on them into real and imaginary parts
(as shown in Fig. 1) that look like images by themselves.
Moreover, HSV color space is not explored yet for orthog-
onality and complex-valued representation.

There have also been attempts to preserve complex-
valued information in fully-connected layers through man-
ifold learning [2]. Nevertheless, the complex-valued rep-
resentation is sacrificed, and that was done due to the lack
of complex-valued losses; otherwise, imaginary or phase
information would be required to be left out at the end.
Thus, there is a need for complex-valued loss functions
to preserve complex-valued representations throughout, and
we can derive complex-valued loss function from prevalent
cross-entropy loss itself. Moreover, since fully-connected
layers can be implemented through convolution operations
and complex-valued convolutions already exist, it must be
possible to have fully complex-valued networks.

More specifically, we develop FCCNs (Fully Complex-
valued Convolutional Networks), which take complex-
valued images as inputs, perform only complex-valued op-
erations, and have a complex-valued loss function. For in-
puts, we observe that any color in the cylindrical HSV color
model has intersecting color planes. For e.g. (H0, S0, V0)
color will have H = H0, S = S0 and V = V0 planes.
If we consider these planes as argand planes, we can ob-
tain complex numbers using the locations of that color on
them. We use these complex numbers to represent any
color. We call this color model iHSV. Following this, we
can generate a complex-valued representation of any image
I → Ire + iIim, as shown in Fig. 1, where we can separate
an image into real and imaginary parts (images). When im-
ages are supplied in this form to our FCCNs, obtained by
implementing fully-connected layers as convolutional lay-
ers, we get a complex-valued output, which is then matched
against the label (in complex form) by our complex-valued
loss function to help train the network, as shown in Fig. 1.

Our contributions in this paper are three-fold: (i) We pro-
pose iHSV, a novel complex-valued color model. (ii) We de-

rive a complex-valued loss function from the cross-entropy
loss. (iii) We turn iCNNs into FCCNs by implementing
fully-connected layers as convolutional layers.

2. Related Work
Complex-valued Learning: In the realm of deep learn-

ing, the use of complex numbers as weights presents new
opportunities for two-dimensional spectra exploration [14,
38]. Furthermore, [31] and [17] provide evidence for the
importance of phase information in the firing rate of neu-
rons, highlighting the potential benefits of using complex-
valued representations in neural networks. Specifically,
synchronized neurons with similar phases fire together,
while asynchronous neurons with different phases interfere.
This behavior aligns more closely with the functioning of
biological neurons, and the passage of synchronized in-
puts through neurons can be likened to the gating mech-
anism in both deep feedforward and recurrent neural net-
works [20, 35, 39].

In recent years, complex-valued networks have been
shown to have greater generalization capacity, as demon-
strated in previous works [15,19]. Complex-valued autoen-
coders have also been shown to outperform slot-attention in
object-centric learning [27]. Additionally, complex-valued
networks have been utilized to enhance saliency prediction
[17,18] and iris recognition [29]. The work presented in [4]
further demonstrated that using a complex-valued vector
can be helpful for learning to solve multiple tasks.

Complex-valued Representation: Incorporating the
phase component in deep learning models is also motivated
from a signal-processing perspective. [30] demonstrate the
importance of phase in speech signals and images. Simi-
larly, [5] use complex-valued U-net to improve speech en-
hancement by incorporating phase information. According
to [30], humans rely more on the phase component for per-
ception. Recently, [3] developed a new augmentation tech-
nique by recombining phase and magnitude, resulting in in-
creased robustness of CNNs by focusing more on the phase
information. Although their method uses Fourier trans-
form to generate phase, it highlights the potential benefits
of using complex representations in learning approaches.
Complex-valued networks can directly process complex-
valued inputs in the spatial domain, but as images are real-
valued, a complex-valued color model is required. This re-
search gap is addressed in this study through the proposed
iHSV color model.

In the complex-valued convolutional neural network
(iCNN) proposed by [37], the complex-valued activations
from the convolutional layers are flattened and fed into real-
valued fully connected layers by concatenating their real
and imaginary parts. As a result, the complex-valued infor-
mation is lost during propagation through fully connected
layers. To address this issue, SurReal [2] used manifold
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Figure 2. Proposed iHSV color model: Given an HSV color Ihsv(p) = {Ih(p), Is(p), Iv(p)} for a pixel p, we keep each of its elements
fixed one at a time and derive three argand planes from the HSV color model. The locations of the color on these planes provide us the
required complex-valued color representation {I∗h(p), I∗s (p), I∗v (p)}. Note that (p) has been omitted in the symbols present in the figure
for clarity. Best viewed in color. HSV Color model figure was taken from Wikimedia Commans (file: HSV color solid cylinder.png).

learning, but this approach still resulted in real-valued prop-
agation. To preserve complex-valued propagation in fully
connected layers, we draw inspiration from [26, 33], which
showed that fully connected layers could be implemented as
1x1 convolutions. Therefore, we decided to adopt this ap-
proach and continue with complex-valued convolution op-
erations until the end. Since complex-valued convolution
operations have already been defined in [37], we simply
have to continue with them until the end.

3. Proposed Method
We propose FCCN, a complex-valued fully convolu-

tional network that ensures complex-valued information
flow throughout the network. For generating complex-
valued inputs, we propose a novel complex color model,
iHSV. We also propose a complex-valued loss function to
tackle the deficit between complex-valued outputs and la-
bels. In addition, we implement fully connected layers as
convolution layers, thus preserving complex-valued infor-
mation flow.

Recall that hue (H), saturation (S), and value (V ) repre-
sent the cylindrical HSV color model’s angular, radial, and
vertical axes. A point in this cylinder represents a color de-
noted by a set of three elements: H , S, and V values of
that point. Let Irgb = {Ir, Ig, Ib} denote an RGB image,
and Ihsv = {Ih, Is, Iv} its HSV equivalent. The location
of HSV color of a pixel p in this cylinder can be denoted as
{Ih(p), Is(p), Iv(p)}. This point in the cylinder is the inter-
section point of three color planes: H = Ih(p), S = Is(p),

and V = Iv(p). As shown in Fig. 2, each color plane is
obtained by fixing one of the color elements as the corre-
sponding value in color {Ih(p), Is(p), Iv(p)}.

Let us understand how the above discussion helps us
generate the complex-valued color channels that are fed to
FCCNs as inputs, our FCCN architecture, and the complex-
valued loss function we develop.

3.1. Fixed Hue Based Channel (I∗h)

We slice a rectangular plane by fixing H as Ih(p). While
we have fixed the value of H , the other two axes S and V
still lie on that plane and are orthogonal to each other, as
shown in Fig. 2. Let us treat it as an argand plane with
V as a real axis and S as an imaginary axis. Upon doing
that, we can represent any 2-D location on that plane as a
complex number, i.e., (V , S) can be represented as V +
iS. Therefore, we can derive the following complex number
from the location of Ihsv(p) on H = Ih(p) color plane:

I∗h(p) = Iv(p) + iIs(p) (1)

where we simply substitute the color values and denote the
derived complex number with I∗h(p), since it’s obtained by
fixing H = Ih(p). Thus, we now have the first element of
the complex representation of color Ihsv(p) in the form of
I∗h(p).



Algorithm 1: iHSV Color Model
Input: An image I
/* convert RGB image to HSV image */

Pre-processing: Irgb → Ihsv
Process: iHSV Generation
/* convert each pixel from HSV → iHSV */

foreach p ∈ Ihsv do
I∗h(p) = Iv(p) + iIs(p)
I∗s (p) = Is(p)Ih(p) + iIv(p)
I∗v (p) = Is(p)cos(Ih(p)) + iIs(p)sin(Ih(p))

I∗hsv = {I∗h, I∗s , I∗v}
return I∗hsv

3.2. Fixed Saturation Based Channel (I∗s )

We can similarly slice out a hollow cylinder when we
fix S to Is(p). While we have fixed the value of S, the
other two axes, H and V , still play a role in locating a point
on that hollow cylinder. We open up this hollow cylinder
to form a rectangular plane, as shown in Fig. 2. On this
plane lie two orthogonal axes, Is(p)H and V . Note here
that the axis H is scaled by the factor of Is(p) (the radius
of the cylinder) to represent arc length instead of the an-
gle. We can treat this plane also as an argand plane with
Is(p)H as the real axis and V as the imaginary axis. Upon
doing that, again, we can represent any 2-D location on that
plane as a complex, i.e., the location (Is(p)H ,V ) leads to
Is(p)H+ iV . Therefore, the complex number derived from
the location of Ihsv(p) on the color plane S = Is(p) is as
follows:

I∗s (p) = Is(p)Ih(p) + iIv(p) (2)

where we substitute the color values and denote the derived
complex number with I∗s (p), since it’s obtained by fixing
S = Is(p). Thus, I∗s (p) becomes the second element we
require for complex representation of color Ihsv(p).

3.3. Fixed Value Based Channel (I∗v )

As shown in Fig. 2, we can also slice out a circular plane
when we fix V as Iv(p). While we have fixed the value
of V , the other two axes, H and S, can still be used to
find the polar coordinates of a point on that circular plane.
Given that, we can have a cartesian coordinate system with
Scos(H) and Ssin(H) as the two orthogonal axes. Let
us treat this plane also as an argand plane with Scos(H)
as a real axis and Ssin(H) as an imaginary axis. Upon
doing that, Scos(H) + iSsin(H) can now represent loca-
tion (Scos(H), Ssin(H)). Therefore, the complex num-
ber derived from the location of Ihsv(p) on the color plane
V = Iv(p) is as follows:

I∗v (p) = Is(p)cos(Ih(p)) + iIs(p)sin(Ih(p)) (3)

Figure 3. An illustration of how, using iHSV, an RGB image can
be converted into complex-valued inputs required by an iCNN.

where we substitute the color values and denote the derived
complex number with I∗v (p), since it’s obtained by fixing
V = Iv(p). Thus, we now have the third element of our
complex representation of color Ihsv(p) as I∗v (p).

3.4. iHSV Color

Now that we have the three complex-valued elements of
color, we can combine them to form the set required for the
complex representation of color I∗hsv(p) as the following:

I∗hsv(p) = {I∗h(p), I∗s (p), I∗v (p)} (4)

which we represent as I∗hsv(p). This way, any colored pixel
can get a complex-valued color representation, as we do
in Algorithm 1 to generate complex image I∗hsv from an
RGB image I . The constituents of I∗hsv are obtained using
Eqns.(1)-(3), for which we need to first convert Irgb → Ihsv
through the pre-processing step.

Table 1 presents the iHSV values of several well-known
colors to give readers a sense of the types of complex val-
ues we obtain. Notably, when the saturation Is is zero, all
three complex channels depend only on Iv . This behavior is
expected since the iHSV color model is based on the HSV
model, where, in the case of zero saturation, we are left with
only the axis of the cylinder. Therefore, the value remains
the only variable in this scenario.

3.5. Complex-valued Inputs

iCNNs require a real image and an imaginary image as
inputs. To obtain the images, we stack the real components
of our color elements to form the real image and the imag-
inary components for the imaginary image. Hence, the re-
sulting complex image I can be written as:

I = Ire + iIim (5)

where, the real component of an image is Ire =
{ℜ(I∗h),ℜ(I∗s ),ℜ(I∗v )}, and the imaginary component is
Iim = {ℑ(I∗h),ℑ(I∗s ),ℑ(I∗v )}. In Fig. 3, given an image,
we pictorially illustrate how one can obtain these compo-
nents to form the two inputs required for iCNNs. Fig. 4



Table 1. RGB −→HSV−→ iHSV conversion of basic colors

Color RGB HSV iHSV

I∗h I∗s I∗v

Red K (255, 0, 0) (0.00, 1.00, 1.00) 1.00 + i1.00 0.00 + i1.00 1.00 + i0.00

Green K (0, 255, 0) (2.09, 1.00, 1.00) 1.00 + i1.00 2.09 + i1.00 −0.49 + i0.86

Blue K (0, 0, 255) (4.19, 1.00, 1.00) 1.00 + i1.00 4.19 + i1.00 −0.50− i0.86

Cyan K (0, 255, 255) (3.14, 1.00, 1.00) 1.00 + i1.00 3.14 + i1.00 −1.00 + i1.22

Yellow K (255, 255, 0) (1.04, 1.00, 1.00) 1.00 + i1.00 1.04 + i1.00 0.50 + i0.86

Magenta K (255, 0, 255) (5.23, 1.00, 1.00) 1.00 + i1.00 5.23 + i1.00 0.50− i0.86

Black K (0, 0, 0) (0.00, 0.00, 0.00) 0.00 + i0.00 0.00 + i0.00 0.00 + i0.00

Gray K (128, 128, 128) (0.00, 0.00, 0.50) 0.50 + i0.00 0.00 + i0.50 0.00 + i0.00

White K (255, 255, 255) (0.00, 0.00, 1.00) 1.00 + i0.00 0.00 + i1.00 0.00 + i0.00

Figure 4. Real (Ire) and imaginary (Iim) components of sample
images (I).

shows image visualization of both the components for sam-
ple images.

It is worth noting that the proposed conversion function,
Ihsv → I∗hsv , is a one-to-one, invertible function. This can
be proven by demonstrating that the original Ihsv(p) values
can be obtained from a given I∗hsv , as shown below:

Ih =
ℜ(I∗s )
|I∗v |

⇒ ℜ(IsIh + iIv)

|Iscos(Ih) + iIssin(Ih)|
⇒ IsIh

Is
⇒ Ih

(6)

Is = |I∗v | ⇒ |Iscos(Ih) + iIssin(Ih)| ⇒ Is (7)
Iv = ℜ(I∗h) ⇒ ℜ(Iv + iIs) ⇒ Iv (8)

Note that the last step of Eqn.(6) assumes Is ̸= 0. When
Is = 0, the undefined case of 0/0 arises, exactly what we
expect from HSV color model, since hue is undefined when
saturation turns zero.

3.6. FCCN Architecture

Generating probabilities and calculating losses in im-
age classification tasks requires real values, which poses
a challenge for complex-valued features. Current methods

Complex Output

Complex Input

Adaptive
Average
Pooling

Figure 5. Blueprint of FCCNs: First, complex-valued convolu-
tions are performed to obtain complex-valued feature maps. Then,
adaptive average pooling is done to reduce the spatial dimensions
to 1× 1. At the end, 1× 1 complex-valued convolutions are per-
formed to reduce the channel size to the number of classes.

address this challenge by converting complex-valued fea-
tures to real-valued ones using different strategies. Some
methods, such as those based on DCN [37], treat the real
and imaginary components of complex-valued features as
two separate real-valued features. Other methods, such as
SurReal [2], employ manifold distance metrics. However,
both of these strategies discard valuable phase information
and undermine the end-to-end complex-valued information
flow. To preserve complex-valued properties, we propose
using convolutional layers to replace fully-connected ones.
In order to accomplish this, we use complex convolution
layers to obtain feature maps. Then, adaptive average pool-
ing is done to reduce the spatial dimension of features to
size 1× 1 (H ×W ×C → 1× 1×Cf , where C = #chan-
nels, H = height, and W = width). Since 1 × 1 convo-
lution is equivalent to fully connected operation, we can
use 1 × 1 convolutions to replace them [26]. This way,
we can preserve the complex-valued flow and eventually
reduce the number of channels to the number of classes
(1 × 1 × #class). We denote this 1 × 1 convolution part
as fconv . In Fig. 5, we give a blueprint of this approach
to better understand how FCCNs are fully complex-valued
and convolutional in a true sense.



3.7. Complex-valued Cross-entropy Loss (Lcomp)

Let us consider our FCCN as a classifier function fcomp :
CH×W×3 → Cc, solving a c-class classification prob-
lem. Let α denote the set of parameters of the classifier,
and let yjk denote kth element of one-hot encoded label
of jth training sample. We cannot directly use the cross-
entropy loss for complex-valued classifier fcomp, which has
a complex-valued output. So, we modify cross entropy by
decomposing zj = fcomp(xj ;α), where zj is the complex-
valued vector output of fcomp. We now define our new com-
plex loss function as Lcomp and derive it as follows:

Lcomp = − 1

n

n∑
j=1

c∑
k=1

yjk log zjk

= − 1

n

n∑
j=1

c∑
k=1

yjk log(|zjk|eiθjk)
(9)

where we express our z in polar form. This can now
be rewritten as follows by considering |z|s as the required
probabilities for the classification task.

Lcomp = LCE − i
1

n

n∑
j=1

c∑
k=1

yjkθjk (10)

where LCE is the usual real-valued cross-entropy loss, and
the other term serves as imaginary loss.

It is worth noting that the magnitude of the complex-
valued output vector zj is constrained by Σc

k=1|zjk| = 1
and |zjk| ≥ 0 ∀j, k. To handle this constraint and ensure
that the probability distribution of the output is valid, we
first separate the magnitude and phase components of the
complex vector. Next, we use softmax to create a probabil-
ity distribution for the magnitude while leaving the phase
information unchanged. Once we obtain the probability dis-
tribution in the form of magnitudes, we can apply the stan-
dard cross-entropy loss to the real part of Lcomp. To ensure
that our proposed loss function is differentiable, it is neces-
sary to demonstrate that it adheres to the Cauchy-Riemann
equations [36]. These equations pertain to a complex func-
tion f(x, y) = u(x, y) + iv(x, y), where x and y are com-
ponents of a complex number z = x+ iy. Specifically, the
equations require that:

∂u

∂x
=

∂v

∂y
equa and 1234

∂v

∂x
= −∂u

∂y

We provide complete proof of the differentiability of our
proposed loss function in the supplementary material of this
paper.

In complex domain, label vector yj can be represented as
yje

i0, suggesting that our loss should minimize the devia-
tion between yje

i0 and zj . It is clear that real part minimizes

deviation between their magnitudes through LCE . On the
other hand, when yjk = 1, the imaginary part forces θjk
to be 2π, which is equivalent to 0 because ei(2π+θ) = eiθ.
That is when the minimum imaginary loss (−2π) can oc-
cur, so Lcomp also minimizes the deficit between phases.
Notably, our proposed loss function differs from traditional
approaches that discard phase information in favor of sim-
pler representations. Instead, by explicitly minimizing the
imaginary loss, our model can effectively leverage phase in-
formation in the complex domain.

Optimization: There are two types of gradients at the
last layer: one for |z|s and another for θs. In our loss func-
tion, since the real part entirely relies on |z|s and the imag-
inary part entirely relies on θs, we assign the gradients of
real part to |z|s and the gradients of the imaginary part to
θs.

4. Experiments

In this section, we present the evaluation of our proposed
Fully Convolutional Complex-valued Networks (FCCNs)
and compare their performance with other methods on both
real-valued and complex-valued datasets.

4.1. Datasets & Model Architectures

We employ a total of five diverse image classifica-
tion datasets to evaluate the performance of our proposed
method: CIFAR-10 [23], CIFAR-100 [24], STL-10 [6],
SVHN [28], and Tiny-ImageNet [25]. CIFAR-10 comprises
ten categories, each with 5k training and 1k testing images.
SVHN also has ten categories, but it contains a larger num-
ber of images: 73.2k for training and 26k for testing in total.
Similarly, STL-10 contains ten categories, with each cate-
gory having 500 images for training and 800 for testing. On
the other hand, CIFAR-100 has 100 categories, with each
category having 500 training and 100 testing images. Fi-
nally, Tiny-ImageNet, a subset of the Original ImageNet,
contains 200 categories. In addition, we conduct experi-
ments on the MSTAR [32] dataset, which is a complex-
valued SAR dataset consisting of 10 different categories,
each with images of size 128× 128.

In our experiments, we adopt the Adam optimizer [21]
with a learning rate of 10−3 and weight decay of 0.1 for
training all models to 100 epochs, unless otherwise stated.
We use CReLU activation [37] and complex batch normal-
ization in our architectures. To demonstrate the effective-
ness of our proposed approach, we evaluate our method on
both smaller and larger networks and compare our results
with existing approaches. For smaller networks, we exper-
iment with different versions of CIFARnet (a small CNN
with 3 convolutional layers and stride=2). Similarly, fol-
lowing [34], for larger networks, we use the CDS-large as
the baseline for comparison.



Table 2. Comparing classification accuracies of different approaches using CIFARnet [34] while varying the input strategy on five bench-
mark real-valued datasets. The values in blue are best, and the ones in red are second best. Our FCCN approach with iHSV inputs obtains
the best results on every dataset. The second best results are achieved using our FCCN approach with sliding [34] input strategy on 3/5
datasets.

Method STL-10 CIFAR-10 CIFAR-100 SVHN Tiny-ImageNet
RGB HSV LAB Sliding iHSV RGB HSV LAB Sliding iHSV RGB HSV LAB Sliding iHSV RGB HSV LAB Sliding iHSV RGB HSV LAB Sliding iHSV

DCN [37] 31.80 31.25 32.20 32.42 33.81 65.17 64.37 58.64 63.83 66.71 32.52 31.46 27.36 28.87 32.94 85.26 85.31 84.43 87.44 87.59 19.19 19.07 18.49 18.30 19.89
SurReal [2] - - - - - 50.68 - 53.02 54.61 - 23.57 - 25.97 26.66 - 80.51 - 53.48 80.79 - - - - - -
CNN [22] 45.14 44.03 46.66 40.47 41.45 64.43 63.82 63.00 63.43 64.80 31.57 30.16 31.72 31.93 33.28 87.47 87.05 84.93 87.37 88.49 21.29 20.16 20.47 20.75 21.17
CDS [34] 41.23 40.32 46.54 47.38 45.60 69.23 66.74 67.58 69.19 68.47 41.83 38.31 39.52 42.08 39.24 89.39 87.64 88.86 90.25 89.41 25.60 21.76 24.35 25.51 25.63
FCCN 59.60 53.67 54.53 58.84 60.61 77.85 74.23 76.76 78.01 78.23 43.40 41.59 42.03 44.19 47.34 89.88 88.17 89.16 90.81 90.95 31.11 24.91 30.92 30.10 33.76

Table 3. Comparing classification accuracies(%) of different ap-
proaches using CDS-large [34], a large network architecture, on
CIFAR-10 dataset. Our proposed FCCN outperforms all other ap-
proaches (DCN [37], CNN [22], and CDS [34]).

Method DCN [37] CNN [22] CDS [34] FCCN

Accuracy (%) 92.8 93.0 93.7 94.3

We aim to demonstrate the scalability and applicabil-
ity of our proposed method FCCN. Hence, we also con-
duct experiments on large-scale ImageNet [9] dataset and
MSTAR [32] (SAR dataset). The ImageNet dataset com-
prises 1,281,167 training images and 50,000 validation im-
ages with 1000 classes, while the MSTAR dataset consists
of naturally occurring complex images.

4.2. Results on Benchmark Datasets

We compare our proposed method with difference ap-
proaches (DCN [37], SurReal [2], CNN [22], and CDS [34])
based on CIFARnet architecture, as shown in Table 2. For
detailed analysis, we provide five different inputs. RGB and
HSV are regular color models, LAB input for networks is
obtained as {L + i0, a + ib}, while sliding input is created
as {R+ iG,G+ iB} following CDS [34], and iHSV is our
proposed color model. On CIFAR-10, CIFAR-100, STL-
10, SVHN, and Tiny-ImageNet, for all inputs, our FCCN
obtains higher accuracy than other methods. Our FCCN ap-
proach, along with our iHSV inputs, obtains the best results
on every dataset. The second best results are achieved us-
ing our FCCN approach with sliding [34] input strategy on
3/5 datasets and with RGB input on the remaining datasets.
We also compare FCCN with other methods using CDS-
Large [34] architecture on CIFAR-10 dataset in Table 3. We
again obtain higher accuracy than all other methods.

4.3. Experiments on ImageNet

We are the first to perform a large-scale experiment using
complex-valued networks for color images. Top-1 and Top-
5 classification accuracies are reported in Table 4. We eval-
uate the performance of our proposed FCCN on large ar-
chitectures: CDS-large, ResNet18, ResNet-50, and ResNet-
152. Using CDS-large architecture, we compare with CDS
[34] and DCN [37]. Using the rest of the architectures, we

compare with DCN [37] and CNN [13]. The experimental
results demonstrate that our proposed FCCN consistently
outperforms competing methods.

We use NVIDIA A100 GPU in these experiments. All
the models are trained with a batch size of 256 using SGD
optimizer, with 0.9 momentum. The input size is 224× 224
for all images. We used random crop, random horizontal
flip, and random rotation augmentations. The network was
randomly initialized and trained for up to a total of 50 ×
104 iterations, and the learning rate starts from 0.1 and is
divided by 10 when the error plateaus.

Table 4. Comparing Top-1 and Top-5 classification accuracies of
our approach with different approaches (CDS [34], DCN [37],
CNN [13]) using multiple large network architectures on large
Imagenet-1k dataset. FCCN performs best again regardless of the
network architecture used.

CDS-large [34] ResNet18 [13] ResNet50 [13] ResNet152 [13]
DCN CDS FCCN CNN DCN FCCN CNN DCN FCCN CNN DCN FCCN

Top-1 49.76 53.25 64.92 72.64 68.54 73.41 75.67 71.50 76.26 76.62 72.64 77.27
Top-5 62.38 76.59 85.24 90.73 87.61 91.95 94.19 89.85 94.70 95.45 90.38 95.84

4.4. Results on MSTAR

The MSTAR (Moving and Stationary Target Acquisition
and Recognition) [32] is a widely used benchmark dataset
comprising SAR images, which are complex-valued. We
follow the same experimental setup as that of [34] to make
comparisons on this dataset. In Table 5, we report the results
of different approaches, both real-valued (CNN [22]) and
complex-valued (SurReal [2], DCN [37], CDS [34] and our
FCCN). We use CDS-large [34] architecture for this exper-
iment. It is clear from the table that our FCCN performs the
best, indicating our enhancements (1 × 1 complex-valued
convolutions and complex-valued loss function) are indeed
significant contributions to iCNN literature.

4.5. Ablation Study

We conduct four ablation studies to highlight our con-
tributions. First three ablation studies are conducted on
CIFAR-10 dataset (following [37]), and the fourth study
is conducted on five different datasets. In all four ablation
studies, we used standard architectures: AlexNet, VGG-16,
VGG-19, ResNet-18, and ResNet-50.



Table 5. Comparing classification accuracies of different ap-
proaches on MSTAR, a complex-valued benchmark dataset.

Method CNN [22] SurReal [2] DCN [37] CDS [34] FCCN

Accuracy (%) 66.9 94.9 89.1 96.1 97.4

First, we study the contributions of different complex-
valued channels of our iHSV color space. Second, we study
how the two components, real and imaginary, of images
contribute. Third, we try to highlight the three contributions
we have made in this paper. Finally, we study the overall
effect of improvements we make over baseline DCN [37]
through experiments on different datasets using different
standard architectures.

Effects of different channels: In this ablation study, we
analyze the contribution of each complex-valued channel
in I∗hsv by inputting only one or a pair of them to FCCN.
Table 6 summarizes the results. It is observed that I∗h and
I∗s perform better individually than I∗v , but still require the
assistance of the other complex-valued channels to achieve
optimal performance. Moreover, different pair-wise com-
binations of channels peak with different architectures, and
once again, the third channel’s contribution is found to be
crucial for the best performance. These results suggest that
all three complex-valued channels play an essential role in
improving the overall performance of FCCN.

Effects of Ire and Iim: We also examined the individual
contribution of the real and imaginary components of the
I∗hsv image representation. We input only one component
at a time to FCCN and evaluated their impact on the overall
performance. The results, as summarized in Table 6, indi-
cate that both real and imaginary components are necessary
for best performance and make almost equal contributions.

Effects of iHSV , fconv and Lcomp: In this study, we
add each of our main contributions one-by-one to assess
their significance. Our main contributions are (i) complex-
valued color model (iHSV ), (ii) 1× 1 convolution (fconv),
and (iii) complex-valued loss function (Lcomp). When
iHSV is absent, complex input has only RGB as real part,
and imaginary part of input is made zero. When fconv is ab-
sent, we use the same strategy as DCN [37]. In the absence
of Lcomp, cross-entropy loss is used, and we ensure real-
valued outputs by having 1× 1 convolution in the end. The
results in Table 7 demonstrate that adding our contributions
one-by-one steadily increases the performance.

Extensive comparisons with baseline: In this study, we
extensively compare with our baseline DCN [37] on five
different datasets using five standard architectures. As evi-
dent from the results in Table 8, we can conclude that our
improvements over baseline DCN [37] are indeed helpful.

Table 6. Results of our ablation study that highlights the value
of different parts of our iHSV color representation, which can be
divided in two ways: channel-wise {I∗h, I∗s , I∗v} and component-
wise {Ire, Iim}. We conduct this study using a wide-range of
standard architectures on CIFAR-10 dataset.
I∗h I∗s I∗v Ire Iim AlexNet VGG-16 VGG-19 ResNet-18 ResNet-50
✓ 81.66 90.07 91.80 89.81 89.24

✓ 81.12 90.97 91.49 88.73 88.86
✓ 71.15 81.17 80.85 78.23 79.22

✓ ✓ 86.75 88.58 91.16 91.41 88.39
✓ ✓ 85.08 90.21 91.36 90.91 88.45
✓ ✓ 82.79 90.06 91.03 90.18 90.53

✓ 79.33 91.64 91.81 90.45 91.84
✓ 79.38 91.36 91.31 91.54 91.69

✓ ✓ ✓ ✓ ✓ 89.36 92.71 93.25 93.35 93.58

Table 7. Results of our ablation study that highlights the value of
different components of our proposed method: iHSV, fconv and
Lcomp. We conduct this study using a wide-range of standard ar-
chitectures on CIFAR-10 dataset.
iHSV fconv Lcomp AlexNet VGG-16 VGG-19 ResNet-18 ResNet-50

79.71 90.26 90.35 90.54 90.17
✓ 80.54 90.61 90.29 90.01 90.87
✓ ✓ 82.33 91.54 91.05 91.17 91.79

✓ ✓ ✓ 89.36 92.71 93.25 93.35 93.58

Table 8. All our improvements are over DCN [37], our baseline
method. Here, we study the overall affect of our improvements
using a wide-range of standard architectures on different bench-
mark datasets.

Dataset Method AlexNet VGG-16 VGG-19 ResNet-18 ResNet-50

CIFAR-10 DCN [37] 80.55 91.74 92.26 86.89 88.61
FCCN 89.36 92.71 93.25 93.35 93.58

STL-10 DCN [37] 66.97 72.84 70.49 65.31 66.32
FCCN 71.03 76.42 76.62 76.48 76.22

SVHN DCN [37] 92.16 95.51 95.34 94.58 95.41
FCCN 92.54 94.76 95.12 96.31 96.38

CIFAR-
100

DCN [37] 58.14 67.18 66.13 68.45 68.63
FCCN 65.17 69.31 71.77 73.63 74.96

Tiny-
ImageNet

DCN [37] 46.09 50.82 52.33 54.26 55.28
FCCN 48.93 55.38 55.57 59.84 60.70

4.6. Model performance Analysis

Scalability: As evident from the discussions above, it
can be observed that we have conducted experiments rang-
ing from small models with small datasets (CIFARnet with
STL-10) to large models with large datasets (ResNet-152
with ImageNet). In all these experiments, we observed su-
perior results for our proposed approach. Thus, our pro-
posed approach is definitely scalable. We also observe that
on small-scale datasets, such as STL-10, where the number
of training examples is less, our approach achieves consid-
erable performance improvements (9-13%) using small (see
Table 2) and large models (see Table 8), demonstrating the
effectiveness of FCCN in low-resource scenarios.
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Figure 6. Accuracy curves obtained using DCN, CNN, and FCCN
approaches on ImageNet-1k, revealing the faster learning capabil-
ity of FCCN.

Faster Learning: From the accuracy plots of CNN,
DCN, and FCCN approaches shown in Fig. 6, it’s clear that
our FCCN approach exhibits faster learning capability com-
pared to the other two. Here, we kept the learning rate con-
stant (0.1) while training ResNet-50 models using these ap-
proaches for 30 epochs on the ImageNet-1K dataset.

5. Conclusion
In this work, we have presented fully complex-valued

convolutional networks (FCCN), which operate entirely in
the complex domain. It takes complex-valued image inputs
using our novel complex-valued color model, iHSV, and is
optimized using our novel complex-valued loss function.
By maintaining such end-to-end consistency in complex-
valued nature, our proposed approach outperforms previous
works on complex-valued networks with significant mar-
gins on numerous datasets, including ImageNet-1k.
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ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional

networks. In Yoshua Bengio and Yann LeCun, editors,
2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings, 2014. 3

[34] Utkarsh Singhal, Yifei Xing, and Stella X Yu. Co-domain
symmetry for complex-valued deep learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 681–690, 2022. 2, 6, 7, 8

[35] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-
huber. Highway networks. arXiv preprint arXiv:1505.00387,
2015. 2

[36] Elias M Stein and Rami Shakarchi. Complex analysis, vol-
ume 2. Princeton University Press, 2010. 6

[37] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy
Serdyuk, Sandeep Subramanian, Joao Felipe Santos,
Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and
Christopher J Pal. Deep complex networks. In International
Conference on Learning Representations, 2018. 2, 3, 5, 6, 7,
8

[38] Mark Tygert, Joan Bruna, Soumith Chintala, Yann LeCun,
Serkan Piantino, and Arthur Szlam. A mathematical moti-
vation for complex-valued convolutional networks. Neural
computation, 28(5):815–825, 2016. 2

[39] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image genera-
tion with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016. 2

[40] Bhavya Vasudeva, Puneesh Deora, Saumik Bhattacharya,
and Pyari Mohan Pradhan. Compressed sensing mri recon-
struction with co-vegan: Complex-valued generative adver-
sarial network. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 672–681,
2022. 1


